Abstract:
In one embodiment, a process tracks measured carrier frequency offsets (CFOs) of identified transmitters over a period of activity of the identified transmitters, and determines predicted CFOs for the identified transmitters and predicted transmitter behavior as a probability of specific transmitters of the identified transmitters being active at given times based on the activity of the identified transmitters. The process may then determine, based on the predicted CFOs and predicted transmitter behavior, CFO ranges that a receiver should expect for upcoming packets, and instructs the receiver to use the CFO ranges as a prioritized list of dynamically selected CFOs to use to extract single or colliding packets from among potential interferences using frequency demodulation.
Abstract:
Embodiments of the present invention relate to methods and systems for simultaneous communication with multiple wireless communication devices. In some embodiments, a method for simultaneous communication with multiple wireless communication devices includes receiving, using a plurality of antennas at a first wireless station, a plurality of packets, comprised of orthogonal frequency division multiplexing (OFDM) wireless signals, transmitted simultaneously from a plurality of other wireless stations wherein each of the simultaneously transmitted packets includes a plurality of frequency tones, frequency domain transform the received packets, grouping frequency domain transform outputs for each subcarrier, determining a difference between subcarrier groups formed over different sample sets, and determining a set of weights for each subcarrier, wherein the weights are selected such that the first wireless station can at least one of detect or demodulate the received plurality of packets.
Abstract:
In one illustrative example, a device configured for use in a wireless local area network (WLAN) may cause a spatial reuse (SR) adjustment to be performed based on data received from a multi-user receiver procedure for the blind detection and demodulation of colliding packets from multiple stations. This procedure may be performed by one or more access points (APs) and/or distributed sensor nodes, each having such a multi-user receiver. The procedure may involve receiving and decoding, over a channel, a first spatial stream from a first device of a first base service set (BSS) color; simultaneously receiving and decoding, over the channel, a second spatial stream from a second device of a second BSS color (i.e. an overlapping BSS or “OBSS”); and calculating a signal-to-interference ratio (SIR) based on signal levels associated with the streams. The SR adjustment may involve adjusting an OBSS Packet Detect (PD) (OBSS-PD) threshold.
Abstract:
In one illustrative example, a device configured for use in a wireless local area network (WLAN) may cause a spatial reuse (SR) adjustment to be performed based on data received from a multi-user receiver procedure for the blind detection and demodulation of colliding packets from multiple stations. This procedure may be performed by one or more access points (APs) and/or distributed sensor nodes, each having such a multi-user receiver. The procedure may involve receiving and decoding, over a channel, a first spatial stream from a first device of a first base service set (BSS) color; simultaneously receiving and decoding, over the channel, a second spatial stream from a second device of a second BSS color (i.e. an overlapping BSS or “OBSS”); and calculating a signal-to-interference ratio (SIR) based on signal levels associated with the streams. The SR adjustment may involve adjusting an OBSS Packet Detect (PD) (OBSS-PD) threshold.
Abstract:
A method and an apparatus in a first wireless station of a network transmitting to a second wireless station. The network uses multi-tone OFDM signals. The first station includes multiple antennas and a receive and a transmit signal path per antenna. Each receive signal path includes a discrete Fourier transformer determining the tones in a received signal, and each transmit signal path includes an inverse discrete Fourier transformer converting tones to a signal. The method includes determining channel estimates for each tone and each receive path while receiving from the second station, determining transmit weights to transmit to the second station, tone-by-tone weighting a signal for transmission to the second station to produce weighted tone sets for each transmit signal path, and transmitting the weighted tone sets. The first station is configured so that the weighting produces additive beamforming without the second station needing multiple antennas.