Abstract:
A computing device connected to a power source via a combined power/data connection obtains an authentication request from the power source. The authentication request includes a freshness mechanism provided by the power source. The computing device signs an authentication response with a private key associated with a verified identity stored on the computing device. The authentication response includes the freshness mechanism. The computing device provides the authentication response to the power source, and receives power from the power source.
Abstract:
Controlled startup of devices is based on dynamic statistical predictions. Timely startup of onboard associated vehicle devices is based on dynamic statistical predictions and driver proximity to the vehicle. An apparatus for timely startup includes an interface operatively coupled with a power consuming device and control logic coupled with the interface. The control logic is operable in a first mode to perform processing for determining a presence of a first condition of the vehicle, and to selectively activate the power consuming device of the vehicle, via the interface, responsive to determining the presence of the first condition. The control logic is operable in a second mode to suspend, via the interface, the processing for determining the presence of the first condition of the vehicle. The control logic selectively transitions between the first and second modes in accordance with a stochastic modeling of the presence of the first condition over time.
Abstract:
Controlled startup of devices is based on dynamic statistical predictions. Timely startup of onboard associated vehicle devices is based on dynamic statistical predictions and driver proximity to the vehicle. An apparatus for timely startup includes an interface operatively coupled with a power consuming device and control logic coupled with the interface. The control logic is operable in a first mode to perform processing for determining a presence of a first condition of the vehicle, and to selectively activate the power consuming device of the vehicle, via the interface, responsive to determining the presence of the first condition. The control logic is operable in a second mode to suspend, via the interface, the processing for determining the presence of the first condition of the vehicle. The control logic selectively transitions between the first and second modes in accordance with a stochastic modeling of the presence of the first condition over time.
Abstract:
Presented herein are techniques for updating detailed maps used to navigate an autonomous vehicle. The techniques include determining that a vehicle has come within a predetermined range of a road side unit, establishing a communication link with the vehicle, receiving, from the vehicle, data sufficient to identify a vehicle type of the vehicle, based on the vehicle type, selecting a map, stored by the road side unit, for the vehicle, sending a query to a neighbor road side unit seeking data to augment the map, in response to the query, receiving the data to augment the map from the neighbor road side unit, updating the map based on the data to augment the map to obtain an updated map, and sending at least a aspects of the updated map to the vehicle.
Abstract:
Presented herein are techniques for updating detailed maps used to navigate an autonomous vehicle. The techniques include determining that a vehicle has come within a predetermined range of a road side unit, establishing a communication link with the vehicle, receiving, from the vehicle, data sufficient to identify a vehicle type of the vehicle, based on the vehicle type, selecting a map, stored by the road side unit, for the vehicle, sending a query to a neighbor road side unit seeking data to augment the map, in response to the query, receiving the data to augment the map from the neighbor road side unit, updating the map based on the data to augment the map to obtain an updated map, and sending at least a aspects of the updated map to the vehicle.
Abstract:
Presented herein are techniques for updating detailed maps used to navigate an autonomous vehicle. The techniques include determining that a vehicle has come within a predetermined range of a road side unit, establishing a communication link with the vehicle, receiving, from the vehicle, data sufficient to identify a vehicle type of the vehicle, based on the vehicle type, selecting a map, stored by the road side unit, for the vehicle, sending a query to a neighbor road side unit seeking data to augment the map, in response to the query, receiving the data to augment the map from the neighbor road side unit, updating the map based on the data to augment the map to obtain an updated map, and sending at least a aspects of the updated map to the vehicle.
Abstract:
A system includes an on-board unit (OBU) in communication with an internal subsystem in a vehicle on at least one Ethernet network and a node on a wireless network. A method in one embodiment includes receiving a message on the Ethernet network in the vehicle, encapsulating the message to facilitate translation to Ethernet protocol if the message is not in Ethernet protocol, and transmitting the message in Ethernet protocol to its destination. Certain embodiments include optimizing data transmission over the wireless network using redundancy caches, dictionaries, object contexts databases, speech templates and protocol header templates, and cross layer optimization of data flow from a receiver to a sender over a TCP connection. Certain embodiments also include dynamically identifying and selecting an operating frequency with least interference for data transmission over the wireless network.
Abstract:
A power source that supplies power to authorized computing devices generates a query requesting the power usage of the computing devices over a predetermined time period. Each computing device receives the query and provides a response with an indication of the measured or estimated power usage during the predetermined time period. The power source adds up the power usage of each authorized computing device to determine a difference between the reported power usage and the power supplied to the authorized computing devices. The power source may mitigate any discrepancy by cutting off power to ports that are providing more power than is being reported as consumed by the authorized computing devices.
Abstract:
Presented herein are techniques for updating detailed maps used to navigate an autonomous vehicle. The techniques include determining that a vehicle has come within a predetermined range of a road side unit, establishing a communication link with the vehicle, receiving, from the vehicle, data sufficient to identify a vehicle type of the vehicle, based on the vehicle type, selecting a map, stored by the road side unit, for the vehicle, sending a query to a neighbor road side unit seeking data to augment the map, in response to the query, receiving the data to augment the map from the neighbor road side unit, updating the map based on the data to augment the map to obtain an updated map, and sending at least a aspects of the updated map to the vehicle.
Abstract:
A system includes an on-board unit (OBU) in communication with an internal subsystem in a vehicle on at least one Ethernet network and a node on a wireless network. A method in one embodiment includes receiving a message on the Ethernet network in the vehicle, encapsulating the message to facilitate translation to Ethernet protocol if the message is not in Ethernet protocol, and transmitting the message in Ethernet protocol to its destination. Certain embodiments include optimizing data transmission over the wireless network using redundancy caches, dictionaries, object contexts databases, speech templates and protocol header templates, and cross layer optimization of data flow from a receiver to a sender over a TCP connection. Certain embodiments also include dynamically identifying and selecting an operating frequency with least interference for data transmission over the wireless network.