Abstract:
A MEMS scanning device includes more than one type of actuation. In one approach capacitive and magnetic drives combine to move a portion of the device along a common path. In one such structure, the capacitive drive comes from interleaved combs. In another approach, a comb drive combines with a pair of planar electrodes to produce rotation of a central body relative to a substrate. In an optical scanning application, the central body is a mirror. In a biaxial structure, a gimbal ring carries the central body. The gimbal ring may be driven by more than one type of actuation to produce motion about an axis orthogonal to that of the central body. In another aspect, a MEMS scanning device is constructed with a reduced footprint.
Abstract:
A portable end device, such as a bar code scanner, may be equipped with auxiliary interfaces. The auxiliary interfaces may be easily added to the end device as a replaceable cover, such as a replaceable battery door. A signal path conducts signals to and from the replaceable cover. One auxiliary interface is a Bluetooth radio. Data integrity protocols may be selected to guarantee delivery and guarantee no duplicate deliveries. Host pairing algorithms may provide standard or strong pairing with a host computer. Ergonomic interface features allow a user to control and monitor the operation of the end device and the data link with minimal hardware cost and battery life impact. Host software programs provide data routing, automatic reestablishment of the data link, and other functions. The system is adaptable to a wide array of use environments through the selection of timer parameters in the end device.
Abstract:
A method includes obtaining a measurement of a property of a light source, scanning light from the light source onto a surface, such that the light interacts with the surface, detecting light from the surface to create a picture element, and correcting the picture element with the measurement of the property. An apparatus includes a scanned beam display, the scanned beam display is configured to receive a signal and to scan the signal for viewing by a user. The signal is to contain picture element information. The picture element information includes information for a plurality of colors, wherein information for at least one color is corrected to substantially remove a perturbation to the picture element information, such that an image containing the picture element information will be substantially unchanged by the perturbation.
Abstract:
Apparatuses and methods for scanned beam endoscopes, endoscope tips, and scanned beam imagers are disclosed. In one aspect, a scanned beam endoscope includes at least one light detection element that collects light reflected from a FOV through one or more openings in the scanner of the endoscope. In another aspect, the illumination optical fiber may be positioned so that its output end is laterally positioned in relation to the scanner. In yet another aspect, the scanner is oriented to provide a non-axial FOV.
Abstract:
Methods and apparatuses for selecting and displaying an image with the best focus are disclosed. In one aspect, a method of displaying a captured image includes capturing a plurality of images of a field of view (FOV) using an image capture device, selecting one of the images having the best focus, and displaying the selected image on the image capture device. In another aspect, a method of displaying a captured image includes capturing a plurality of images of a FOV, dividing each of the images into a plurality of regions, and comparing corresponding regions from each of the images. The regions having the best focus are selected. A composite image is constructed formed from the regions with the best focus and the composite image is displayed. Image capture devices configured to effect the above methods are also disclosed.
Abstract:
A scanner such as a bar-code scanner includes a scan-beam generator, a beam reflector having a first magnet, and a beam-sweep mechanism having a second magnet. The beam-sweep mechanism causes the reflector to sweep the scan beam across a target such as a bar-code symbol by exerting a force on the first magnet with the second magnet. In one example, attraction between the magnets holds the reflector steady in a non-sweep position. Conversely, in a sweep position, repulsion between the magnets causes the reflector to oscillate and sweep the scan beam across a target such as a bar-code symbol. Because it does not include a motor for rotating a beam-sweep mirror, the scanner is often smaller and uses less electrical energy than motorized bar-code scanners.
Abstract:
An integrated photonics module includes at least one light source and a MEMS scanner coupled to and held in alignment by an optical frame configured for mounting to a host system. According to some embodiments, the integrated photonics module may include a plurality of light sources and a beam combiner coupled to the optical frame. According to some embodiments, the integrated photonics module includes a selective fold mirror configured to direct at least a portion of emitted light toward the MEMS scanner in a normal direction and pass scanned light through to a field of view. The selective fold mirror may use beam polarization to select beam passing and reflection. The integrated photonics module may include a beam rotator such as a quarter-wave plate to convert the polarization of the emitted light to a different polarization adapted for passage through the fold mirror. The integrated photonics module may include one or more light detectors.
Abstract:
A portable video projector includes facility to direct a projected image field along an axis in an alignment corresponding to the state of an optical element.
Abstract:
An aperture plate includes an opening and a surface adjacent to the opening. The opening passes electromagnetic energy such as light to a reflector that is aligned with the opening and that directs the electromagnetic energy to a location. The surface reflects incident electromagnetic energy away from the location in a direction that is outside of the range of directions. Such an aperture plate insures that electromagnetic energy, e.g., light, strikes only the desired portions of the reflector, and that peripheral light that is outside of the aperture opening is reflected away from the location, e.g., display screen, toward which the reflector directs the electromagnetic energy. Furthermore, because such an aperture plate is mounted near the reflector, the alignment tolerances are typically less stringent than for an aperture plate mounted near the energy source.