摘要:
A method includes forming a power control circuit through coupling a gate switch array between a buffer stage at an input of the power control circuit and an amplifier array including N amplifier stages in parallel to each other, with N>1. The method also includes coupling each of the N amplifier stages to a corresponding gate switch of the gate switch array, and controlling an output power of the power control circuit by switching one or more appropriate gate switches of the gate switch array to apply an input signal from the buffer stage to a corresponding one or more amplifier stages coupled to the one or more appropriate gate switches such that a maximum output power is achieved when all of the N amplifier stages are turned on and a minimum output power is achieved when only one amplifier stage is turned on.
摘要:
A method includes configuring a battery and a voltage regulator configured to regulate an output voltage of the battery to supply power to a memory of an electronic circuit also comprising non-memory circuitry. The method also includes switching the supply of power between the battery and the voltage regulator such that: the memory is powered from the battery when the non-memory circuitry is inactive, the memory is powered from a combination of voltage from the battery and the voltage regulator when the memory is about to communicate with the non-memory circuitry during a transition of the non-memory circuitry into an active state thereof, and the memory and the non-memory circuitry are powered from the voltage regulator during the active state of the non-memory circuitry. Thus, minimal current is drawn from the battery while a state of the memory of the electronic circuit is preserved.
摘要:
A method includes configuring a battery and a voltage regulator configured to regulate an output voltage of the battery to supply power to a memory of an electronic circuit also comprising non-memory circuitry. The method also includes switching the supply of power between the battery and the voltage regulator such that: the memory is powered from the battery when the non-memory circuitry is inactive, the memory is powered from a combination of voltage from the battery and the voltage regulator when the memory is about to communicate with the non-memory circuitry during a transition of the non-memory circuitry into an active state thereof, and the memory and the non-memory circuitry are powered from the voltage regulator during the active state of the non-memory circuitry. Thus, minimal current is drawn from the battery while a state of the memory of the electronic circuit is preserved.
摘要:
A method includes automatically charging a capacitor coupled to a battery configured to power a memory through a charge switch that is closed whenever a voltage of the battery exceeds a recovery trip voltage or exceeds a shutdown trip voltage but is less than the recovery trip voltage and opened whenever the voltage of the battery drops below the shutdown trip voltage such that a minimum voltage of the shutdown trip voltage is maintained on the battery, thereby enabling the memory to retain information therein. The method also includes rendering a stored energy of the capacitor available to all circuitry coupled to the battery following the charging thereof through coupling the capacitor in parallel with the battery based on closure of a discharge switch following the charging of the capacitor.
摘要:
A method includes automatically charging a capacitor coupled to a battery configured to power a memory through a charge switch that is closed whenever a voltage of the battery exceeds a recovery trip voltage or exceeds a shutdown trip voltage but is less than the recovery trip voltage and opened whenever the voltage of the battery drops below the shutdown trip voltage such that a minimum voltage of the shutdown trip voltage is maintained on the battery, thereby enabling the memory to retain information therein. The method also includes rendering a stored energy of the capacitor available to all circuitry coupled to the battery following the charging thereof through coupling the capacitor in parallel with the battery based on closure of a discharge switch following the charging of the capacitor.
摘要:
A method includes pointing a receive beam of a retro-directive antenna array attracted to a jammer circuit instead of a remote transmitter away from the jammer circuit toward the remote transmitter by a first angle based on coarse manual means therefor implemented in electronic circuitry associated with the retro-directive antenna array. The electronic circuitry includes a number of mixers, each of which is configured to mix a Local Oscillator (LO) signal generated from a Voltage Controlled Oscillator (VCO) with a signal received at an antenna element of the retro-directive antenna array. The method also includes automatically fine pointing the receive beam toward the remote transmitter by a second angle following the coarse pointing thereof by the first angle such that the receive beam exactly points to, and tracks, the remote transmitter. The automatic fine pointing is effected through a secondary automatic servo loop implemented in the electronic circuitry.
摘要:
A method includes separating phase of Local Oscillator (LO) signals generated by individual Voltage Controlled Oscillators (VCOs) of a coupled VCO array through varying voltage levels of voltage control inputs thereto. The method also includes frequency multiplying an output of each individual VCO of the coupled VCO array to increase a range of phase differences between the phase separated LO signals generated by the individual VCOs. Further, the method includes mixing the frequency multiplied outputs of the individual VCOs with signals from antenna elements of an antenna array to introduce differential phase shifts in signal paths coupled to the antenna elements during performing beamforming with the antenna array.
摘要:
A method includes separating phase of Local Oscillator (LO) signals generated by individual Voltage Controlled Oscillators (VCOs) of a coupled VCO array through varying voltage levels of voltage control inputs thereto. The method also includes coupling the individual VCOs of the coupled VCO array to one another in a closed, circular configuration to increase phase difference between the phase separated LO signals generated by the individual VCOs compared to a linear configuration of the coupled VCO array. Further, the method includes mixing outputs of the individual VCOs of the circular coupled VCO array with signals from antenna elements of an antenna array to introduce differential phase shifts in signal paths coupled to the antenna elements during performing beamforming with the antenna array.
摘要:
A method includes receiving a remote transmitter signal at an antenna array including a number of antenna elements, mixing the received signal with in-phase and quadrature-phase Local Oscillator (LO) signals from Voltage Controlled Oscillators (VCOs) of a coupled VCO array, and configuring each Phase Locked Loop (PLL) of a number of PLLs to receive an in-phase output of the mixing corresponding to a VCO and a quadrature-phase output of the mixing corresponding to another VCO adjacent to the VCO as inputs thereto. The method also includes feeding back an output of the each PLL to the VCO, driving the in-phase and the quadrature-phase outputs of the mixing from a transmit modulator, and transmitting, in a direction of the remote transmitter, an antenna array signal based on the driving. Further, the method includes sensing a servoed state related to LO phase relationships and holding thereof during the transmission of the signal.
摘要:
A method includes implementing a coupled Voltage Controlled Oscillator (VCO) array with a number of VCOs, and mixing Local Oscillator (LO) signals generated through the number of VCOs of the coupled VCO array with signals from antenna elements of an antenna array to introduce differential phase shifts in signal paths coupled to the antenna elements during performing beamforming with the antenna array. The method also includes accommodating differential coupling between the VCOs to improve immunity to noise and/or interference during the beamforming compared to the VCOs accommodating single-ended coupling therebetween.