Abstract:
A printer for printing on a manually moved print medium. The printer may use thermal or inkjet printing and has user feedback and input. A roller-type position detector enables the printer to be used without a mechanical paper drive mechanism. The printer monitors the print medium as the print medium is propelled through the printer to identify when particular printing fields are aligned to the printhead. The printer then activates the printhead to print image portions in the printing fields. An alternative embodiment of the printer uses a flexible mounting of the printhead. In this embodiment, the paper roll diameter is determined in conjunction with monitoring the rotation of the paper roll to determine the position of the paper without requiring a roller-type position detector.
Abstract:
A thermal printhead formed on a substrate. The plurality of thermal print elements in the thermal printhead are formed in a linear array. Each of the plurality of thermal print elements is respectively connected to a plurality of common electrode traces and a plurality of ground electrode traces. The common electrode traces are switchably connected to a single common electrode and the ground electrode traces are connected to a single ground electrode. The common electrode is held at a common voltage and the ground electrode is held at a ground voltage. The electrical circuit includes at least one common remote sense electrode connected to the single common electrode and, optionally, at least one ground remote sense electrode connected to the single ground electrode.
Abstract:
A thermal printhead formed on a substrate. The plurality of thermal print elements in the thermal printhead are formed in a linear array. Each of the plurality of thermal print elements is respectively connected to a plurality of common electrode traces and a plurality of ground electrode traces. The common electrode traces are switchably connected to a single common electrode and the ground electrode traces are connected to a single ground electrode. The common electrode is held at a common voltage and the ground electrode is held at a ground voltage. The electrical circuit includes at least one common remote sense electrode connected to the single common electrode and, optionally, at least one ground remote sense electrode connected to the single ground electrode.
Abstract:
Gaseous particles or gas-entrained particles may be conveyed by electric fields acting on charged species included in the gaseous or gas-entrained particles.
Abstract:
A heat exchange system includes an electrode configured to electrostatically control a flow of a heated gas stream in the vicinity of a heat transfer surface and/or a heat-sensitive surface.
Abstract:
An integrated circuit is configured for optical communication via an optical polymer stack located on top of the integrated circuit. The optical polymer stack may include one or more electro-optic polymer devices including an electro-optic polymer. The electro-optic polymer may include a host polymer and a second order nonlinear chromomophore, the host polymer and the chromophore both including aryl groups configured to interact with one another to provide enhanced thermal and/or temporal stability.
Abstract:
Techniques are generally described for detecting a concentration level of at least one gas. Some example devices may include a sensor including conductive plate on a surface of dielectric including a nanotube layer formed thereon. The conductive plate and the nanotube layer form a resonator that resonates at a frequency in response to an interrogation signal. The nanotube layer may be configured to associate with one or more gas molecules. The frequency at which the resonator resonates may shift according to which gas molecules are associated with the nanotube layer to identify a particular gas. An amount of resonance may be exhibited as a resonant response signal. An amplitude of the resonant response signal may be indicative of the concentration level of the detected gas.
Abstract:
Energy storage devices for storing energy are provided. An energy storage device includes a flywheel disposed in a chamber of a journal. A gas bearing is formed between an outer face of the flywheel and an inner face of the journal. The gas bearing exerts a compressive force on the flywheel, which allows for higher rotational velocities and higher energy storage.
Abstract:
Techniques are generally described for detecting a concentration level of at least one gas. Some example devices may include a sensor including conductive plate on a surface of dielectric including a nanotube layer formed thereon. The conductive plate and the nanotube layer form a resonator that resonates at a frequency in response to an interrogation signal. The nanotube layer may be configured to associate with one or more gas molecules. The frequency at which the resonator resonates may shift according to which gas molecules are associated with the nanotube layer to identify a particular gas. An amount of resonance may be exhibited as a resonant response signal. An amplitude of the resonant response signal may be indicative of the concentration level of the detected gas.
Abstract:
A scanned beam imager or laser scanner is operable to scan an object moving through its field-of-view. The system may include means for detecting direction and/or speed of the object. The velocity detection means may include sensors, an interface for receiving velocity information from other system elements, or image analysis that examines the skew, stretch, or compression in images. Responsive to object movement direction and speed, the scanned beam imager may alter its pixel capture rate and/or its scan rate to compensate. Alternatively or in combination, the imager may perform software-based image motion compensation. In some embodiments, the system may allow the image capture region to pace objects moving rapidly through its field-of-view.