摘要:
A memory access system for optimizing SDRAM bandwidth includes a memory command processor, and an SDRAM interface and protocol controller. The memory command processor is connected to a memory bus arbiter and data switch circuit for receiving memory access commands outputted by the memory bus arbiter and data switch circuit and converting the memory access commands into reordered SDRAM commands. The SDRAM interface and protocol controller is connected to the memory command processor for receiving and executing the reordered SDRAM commands based on protocol and timing of SDRAM. The memory command processor decodes the memory access commands into general SDRAM commands or alternative SDRAM commands. The memory access commands decoded into alternative SDRAM commands are generated by a specific bus master.
摘要:
In a memory test system with advance features for completed memory system, the hardware components are independently configured to generate versatile test patterns for performing a programmable-loading test, a real case test, and a write-feedback test. The write-feedback test is employed to independently test a memory controller which is embedded in an integrated circuit without communicating with the external SDRAM. In the integrated circuit verification stage, the memory test system supports for analyzing and distinguishing the problems inside or outside of the integrated circuit, and testing individual write and read commands.
摘要:
In a memory test system with advance features for completed memory system, the hardware components are independently configured to generate versatile test patterns for performing a programmable-loading test, a real case test, and a write-feedback test. The write-feedback test is employed to independently test a memory controller which is embedded in an integrated circuit without communicating with the external SDRAM. In the integrated circuit verification stage, the memory test system supports for analyzing and distinguishing the problems inside or outside of the integrated circuit, and testing individual write and read commands.
摘要:
The image data processing system and method disclosed, processes intermediate compressed binary data representing images scanned for copy or exporting, thereby enabling storage of the copy or export file to a common memory storage device. According to an exemplary embodiment, the image data processing system comprises a binary lossless decompress module, a binary to contone restoration module, and an export processing module, the export processing module processing multiple bit image data for exporting to an image data receiving device.
摘要:
A method and system reconstructs a contone image from a binary image by first tagging pixels to identify one of a multiplicity of image content types. The tag information and the pattern of bits surrounding the pixel to be converted to a contone value are used to reconstruct a contone image from a binary image. The pattern of bits in the neighborhood is used to generate a unique identifier. The unique identifier is used as the address for a lookup table with the contone value to be used. A filter also generates a contone value. A selector selects between the look-up table contone value and the filter contone value based an image context type.
摘要:
One embodiment is a method for suppressing background inaccuracies in binary to grayscale image conversion. A binary image is converted to a grayscale image using a neighbor map. An image enhancement function is applied to the grayscale image to supress background inaccuracies in the grayscale image. Another embodiment is method for converting a binary pixel of a binary image to a grayscale pixel of a grayscale image and suppressing noise in the grayscale image using selective filtering of the binary image. Another embodiment is a method for converting a binary image to a first grayscale image and suppressing noise in the first grayscale image to produce a noise suppressed grayscale image using selective filtering of the grayscale image.
摘要:
A method and system reconstructs a contone image from a binary image by first tagging pixels to identify one of a multiplicity of image content types. The tag information and the pattern of bits surrounding the pixel to be converted to a contone value are used to reconstruct a contone image from a binary image. The pattern of bits in the neighborhood is used to generate a unique identifier. The unique identifier is used as the address for a lookup table with the contone value to be used wherein each lookup table corresponds to an image context type.
摘要:
The image data processing system and method disclosed, processes intermediate compressed binary data representing images scanned for copy or exporting, thereby enabling storage of the copy or export file to a common memory storage device. According to an exemplary embodiment, the image data processing system comprises a binary lossless decompress module, a binary to contone restoration module, and an export processing module, the export processing module processing multiple bit image data for exporting to an image data receiving device.
摘要:
A semiconductor device including a semiconductor substrate of a first conductivity type and an epitaxial layer of the first conductivity type disposed thereon is disclosed. Pluralities of first and second trenches are alternately arranged in the epitaxial layer. First and second doped regions of the first conductivity type are formed in the epitaxial layer and surrounding each first trench. A third doped region of a second conductivity type is formed in the epitaxial layer and surrounding each second trench. A first dopant in the first doped region has diffusivity larger than that of a second dopant in the second doped region. A method for fabricating a semiconductor device is also disclosed.
摘要:
A semiconductor device including a semiconductor substrate of a first conductivity type and an epitaxial layer of the first conductivity type disposed thereon is disclosed. Pluralities of first and second trenches are alternately arranged in the epitaxial layer. First and second doped regions of the first conductivity type are formed in the epitaxial layer and surrounding each first trench. A third doped region of a second conductivity type is formed in the epitaxial layer and surrounding each second trench. A first dopant in the first doped region has diffusivity larger than that of a second dopant in the second doped region. A method for fabricating a semiconductor device is also disclosed.