Abstract:
Apparatus for correcting spherical aberration of light reflected from a surface of an information-bearing layer of an optical disk and traversing through a substantially transparent substrate layer, overcoating the information layer, prior to traversal of a multi-element objective lens means, uses a correction lens assembly having several lens elements, with a variable air gap between the adjacent surfaces of a sequential pair of the lens elements. Information about the nominal thickness of an optical disk from which optical energy is then being reflected is obtained, and used to adjust the thickness of the air gap, to correct the additional spherical aberration caused by the change in covering substrate thickness and change the definition of the corrected spot to approach the definition of a spot obtained with a covering substrate of exactly the nominal value.
Abstract:
A wideband optical disc data record/playback apparatus is provided. The apparatus includes means for splitting the output of a single laser into multiple beams. The record beams are independently modulated and used to simultaneously record data at extremely high rates on the surface of an optical disc. The apparatus is capable of recording 1.times.10.sup.11 bits of data on one surface of an optical disc at data rates of 100 to 300 Mb/s. In addition, a plurality of coplanar low power beams are used for playback and data verification purposes. In the playback mode a single beam is split into a plurality of low power beams and one of the plurality of beams is dithered such that the dithered beam exhibits periodic excursions in a radial direction across the surface of the disc. The dithered beam is used for tracking purposes in both the playback and record mode. In a preferred embodiment the playback beams are split by an optical grating and dithered by an acousto-optic device.
Abstract:
In an optical system including a laser diode with astigmatism such that the apparent source position in two orthogonal axes each normal to the beam direction differ, a beam prism expander and a collimating lens positioned between the diode and expander, the collimated lens is positioned relative to the laser such that the radius of curvature of the light beam exiting the beam expander in the two axes is identical.
Abstract:
An optical disk includes a spiraling guide track embedded in a surface of the disk on either side of which is positioned a different information track. Apparatus for both tracking and reading the disk includes a source providing two light beams directed to the disk surface and spaced apart such as to nominally illuminate respective ones of the information tracks and part of the intermediate guide track. Detectors are positioned to receive reflected light from the disk to both provide signals corresponding to information on the disk and to track the beams relative to the disk so that they are located properly with respect to the location of the information tracks on the disk.
Abstract:
An optical record and playback system is described for use in a multi-channel data processing system. An optical head which includes a laser diode array comprises a collection objective, an anamorphic beam expander, a relay lens and a focusing lens having a finite conjugate. The optical head collects the laser beams emitted by the diode array, expands the beam cross-section to form circular beams and focuses the beams to diffraction limited spots. In operation the relay lens is used to image the lasing spots from the laser diode array in the conjugate plane of the finite conjugate focusing lens.
Abstract:
A Dove prism is provided in a multiple beam optical disc record and playback system. In a multi-track optical system, the multiple spots formed in a multi-channel modulator are imaged on the record medium. The track-to-track spacing between adjacent tracks may be adjusted by rotating the Dove prism such that the angle formed between a line which passes through the center of the spots and the velocity vector of the disc is varied.
Abstract:
A wideband optical disc data record/playback apparatus is provided. The apparatus includes means for splitting the output of a single laser into multiple beams. The record beams are independently modulated and used to simultaneously record data at extremely high rates on the surface of an optical disc. The apparatus is capable of recording 1.times.10.sup.11 bits of data on one surface of an optical disc at data rates of 100 to 300 Mb/s. In addition, a plurality of coplanar low power beams are used for playback and data verification purposes. In the playback mode, a single beam is split into a plurality of low power beams and one of the plurality of beams is dithered such that the dithered beam exhibits periodic excursions in a radial direction across the surface of the disc. The dithered beam is used for tracking purposes in both the playback and record mode.
Abstract:
A multi-beam optical recording system includes a semiconductor laser array. The laser beams are expanded via a prism beam expander to have generally circular cross-sections for optimum spot intensity on the recording medium. According to the teaching of the prior art, the average beam angle of incidence on the input prism of the beam expander is the Brewster angle. According to the present invention, means are provided for rotating the beam expander to minimize the variations in spacing between beams, these variations resulting from the magnification distortion of the prisms of the beam expander.
Abstract:
A multi-beam optical record/playback system includes optical elements for directing pluralities of write and read beams as respective diffraction limited spots on the optically-sensitive surface of a rotating disk. The spots on the disk are positioned such that information can be read immediately after it is written. A prism is selectively interposed in the path of write beams for the purpose or erasing previously recorded information. The prism refracts the write beams, causing a shift of its diffraction limited spots to positions behind the corresponding read spots, thus allowing the read beams to track recorded information which is subsequently erased by the light from the refracted beams.
Abstract:
Focus error due to drift from a specified value of the pointing angle of a focus laser light beam with respect to the reflective surface of an optical disc is self-compensated by employing two light beams derived from the same focus laser that have a substantially constant angular displacement therebetween. Any change due to drift in the specified value of the pointing angle of one light beam is accompanied by a substantially equal and opposite change due to drift in the specified value of the pointing angle of the other light beam.