Disjunctive image computation for sequential systems
    1.
    发明授权
    Disjunctive image computation for sequential systems 有权
    顺序系统的分离图像计算

    公开(公告)号:US07693690B2

    公开(公告)日:2010-04-06

    申请号:US11367665

    申请日:2006-03-03

    IPC分类号: G06F17/50 G06F13/00

    CPC分类号: G06F11/3608 G06F17/504

    摘要: A symbolic disjunctive image computation method for software models which exploits a number of characteristics unique to software models. More particularly, and according to our inventive method, the entire software model is decomposed into a disjunctive set of submodules and a separate set of transition relations are constructed. An image/reachability analysis is performed wherein an original image computation is divided into a set of image computation steps that may be performed on individual submodules, independently from any others. Advantageously, our inventive method exploits variable locality during the decomposition of the original model into the submodules. By formulating this decomposition as a multi-way hypergraph partition problem, we advantageously produce a small set of submodules while simultaneously minimizing the number of live variable in each individual submodule. Our inventive method produces a set of disjunctive transition relations directly from the software model, without producing a conjunctive transition relation—as is necessary in the prior art. In addition, our inventive method exploits the exclusive use of live variables in addition to novel search strategies which provide still further benefit to our method.

    摘要翻译: 用于软件模型的符号分离图像计算方法,其利用软件模型独特的许多特征。 更具体地,根据本发明的方法,整个软件模型被分解成一个分离的子模块集合,并构建了一组单独的过渡关系。 执行图像/可达性分析,其中原始图像计算被划分为可以独立于任何其他方式对各个子模块执行的一组图像计算步骤。 有利地,本发明的方法在原始模型分解成子模块期间利用可变局部性。 通过将此分解形式作为多路超图分区问题,我们有利地产生一小组子模块,同时最小化每个子模块中的实时变量数量。 我们的创造性方法直接从软件模型产生一组分离过渡关系,而不产生结合过渡关系 - 这在现有技术中是必需的。 此外,除了新颖的搜索策略之外,我们的创造性方法还利用了实时变量的独家使用,这为我们的方法提供了更多的益处。

    Disjunctive image computation for sequential systems
    2.
    发明申请
    Disjunctive image computation for sequential systems 有权
    顺序系统的分离图像计算

    公开(公告)号:US20070044084A1

    公开(公告)日:2007-02-22

    申请号:US11367665

    申请日:2006-03-03

    IPC分类号: G06F9/45 G06F9/44

    CPC分类号: G06F11/3608 G06F17/504

    摘要: A symbolic disjunctive image computation method for software models which exploits a number of characteristics unique to software models. More particularly, and according to our inventive method, the entire software model is decomposed into a disjunctive set of submodules and a separate set of transition relations are constructed. An image/reachability analysis is performed wherein an original image computation is divided into a set of image computation steps that may be performed on individual submodules, independently from any others. Advantageously, our inventive method exploits variable locality during the decomposition of the original model into the submodules. By formulating this decomposition as a multi-way hypergraph partition problem, we advantageously produce a small set of submodules while simultaneously minimizing the number of live variable in each individual submodule. Our inventive method produces a set of disjunctive transition relations directly from the software model, without producing a conjunctive transition relation—as is necessary in the prior art. In addition, our inventive method exploits the exclusive use of live variables in addition to novel search strategies which provide still further benefit to our method.

    摘要翻译: 用于软件模型的符号分离图像计算方法,其利用软件模型独特的许多特征。 更具体地,根据本发明的方法,整个软件模型被分解成一个分离的子模块集合,并且构建了一组单独的过渡关系。 执行图像/可达性分析,其中原始图像计算被划分为可以独立于任何其他方式对各个子模块执行的一组图像计算步骤。 有利地,本发明的方法在原始模型分解成子模块期间利用可变局部性。 通过将此分解形式作为多路超图分区问题,我们有利地产生一小组子模块,同时最小化每个子模块中的实时变量数量。 我们的创造性方法直接从软件模型产生一组分离过渡关系,而不产生结合过渡关系 - 这在现有技术中是必需的。 此外,除了新颖的搜索策略之外,我们的创造性方法还利用了实时变量的独家使用,这为我们的方法提供了更多的益处。

    Mining library specifications using inductive learning
    6.
    发明授权
    Mining library specifications using inductive learning 有权
    采矿库规范采用归纳学习

    公开(公告)号:US08191045B2

    公开(公告)日:2012-05-29

    申请号:US12050624

    申请日:2008-03-18

    IPC分类号: G06F9/44 G06F9/445

    CPC分类号: G06F8/74 G06F8/36 G06F11/3672

    摘要: A system and method for mining program specifications includes generating unit tests to exercise functions of a library through an application program interface (API), based upon an (API) signature. A response to the unit tests is determined to generate a transaction in accordance with a target behavior. The transaction is converted into a relational form, and specifications of the library are learned using an inductive logic programming tool from the relational form of the transaction.

    摘要翻译: 一种用于挖掘程序规范的系统和方法包括:基于(API)签名,通过应用程序接口(API)生成单元测试来执行库的功能。 确定对单元测试的响应以根据目标行为生成交易。 该事务被转换为关系形式,并且使用来自事务的关系形式的归纳逻辑编程工具来学习库的规范。

    Program analysis using symbolic ranges
    8.
    发明授权
    Program analysis using symbolic ranges 有权
    使用符号范围进行程序分析

    公开(公告)号:US08006239B2

    公开(公告)日:2011-08-23

    申请号:US12015126

    申请日:2008-01-16

    IPC分类号: G06F9/44 G06F9/45

    CPC分类号: G06F11/3604

    摘要: A computer implemented method for generating a representation of relationships between variables in a program employing Symbolic Range Constraints (SRCs) wherein the SRCs are of the form φ:^i=1nli≦xi≦ui where for each i ε[l,n], the linear expressions li,ui are made up of variables in the set{xi+1, . . . ,xn} and wherein the SRCs comprise linear, convex, and triangulated constraints for a given variable order.

    摘要翻译: 一种用于生成使用符号范围约束(SRC)的程序中的变量之间关系的表示的计算机实现的方法,其中所述SRC具有以下形式:其中,对于每个i&egr; [i,n] ],线性表达式li,ui由集合{xi + 1,...中的变量组成。 。 。 ,xn},并且其中SRC对于给定的变量顺序包括线性,凸形和三角形约束。

    Scope bounding with automated specification inference for scalable software model checking
    9.
    发明授权
    Scope bounding with automated specification inference for scalable software model checking 有权
    范围界定了可扩展软件模型检查的自动规范推理

    公开(公告)号:US08719793B2

    公开(公告)日:2014-05-06

    申请号:US13314738

    申请日:2011-12-08

    IPC分类号: G06F9/45

    CPC分类号: G06F8/74 G06F11/3604

    摘要: A scalable, computer implemented method for finding subtle flaws in software programs. The method advantageously employs 1) scope bounding which limits the size of a generated model by excluding deeply-nested function calls, where the scope bounding vector is chosen non-monotonically, and 2) automatic specification inference which generates constraints for functions through the effect of a light-weight and scalable global analysis. Advantageously, scalable software model checking is achieved while at the same time finding more bugs.

    摘要翻译: 一种可扩展的计算机实现的方法,用于在软件程序中发现微妙的缺陷。 该方法有利地采用1)范围界限,其通过排除深嵌套的函数调用来限制所生成的模型的大小,其中范围界限向量被非单调地选择,以及2)自动规范推理,其通过效应来产生功能的约束 轻量级和可扩展的全球分析。 有利地,实现可扩展的软件模型检查,同时发现更多的错误。