Abstract:
Multiple films of red-green-blue (RGB) luminescent silicon nanoparticles are integrated in a cascade configuration as a top coating in an ultraviolet/blue light emitting diode (LED) to convert it to a white LED. The configuration of RGB luminescent silicon nanoparticle films harnesses the short wavelength portion of the light emitted from the UV/blue LED while transmitting efficiently the longer wavelength portion. The configuration also reduces damaging heat and/or ultraviolet effects to both the device and to humans.
Abstract:
Multiple films of red-green-blue (RGB) luminescent silicon nanoparticles are integrated in a cascade configuration as a top coating in an ultraviolet/blue light emitting diode (LED) to convert it to a white LED. The configuration of RGB luminescent silicon nanoparticle films harnesses the short wavelength portion of the light emitted from the UV/blue LED while transmitting efficiently the longer wavelength portion. The configuration also reduces damaging heat and/or ultraviolet effects to both the device and to humans.
Abstract:
Multiple films of red-green-blue (RGB) luminescent silicon nanoparticles are integrated in a cascade configuration as a top coating in an ultraviolet/blue light emitting diode (LED) to convert it to a white LED. The configuration of RGB luminescent silicon nanoparticle films harnesses the short wavelength portion of the light emitted from the UV/blue LED while transmitting efficiently the longer wavelength portion. The configuration also reduces damaging heat and/or ultraviolet effects to both the device and to humans.
Abstract:
Multiple films of red-green-blue (RGB) luminescent silicon nanoparticles are integrated in a cascade configuration as a top coating in an ultraviolet/blue light emitting diode (LED) to convert it to a white LED. The configuration of RGB luminescent silicon nanoparticle films harnesses the short wavelength portion of the light emitted from the UV/blue LED while transmitting efficiently the longer wavelength portion. The configuration also reduces damaging heat and/or ultraviolet effects to both the device and to humans.
Abstract:
The semiconductor laser emitting light in the wavelength range of about 700 nm to 800 nm utilizes an aluminum-free active region layer. An epitaxial structure is grown on a GaAs or AlGaAs substrate and includes an active region layer, confinement layers adjacent the active region layer, and cladding layers adjacent the confinement layers. The active region layer comprises at least one compressively strained InGaAsP quantum well surrounded by transitional layers, with the composition and width of the active region selected to emit light at a selected wavelength, particularly between about 700 nm and 800 nm. High band-gap InGaAlP cladding layers and confinement layers may be utilized to suppress carrier leakage, and the epitaxial structure may be grown on a misoriented substrate to further reduce carrier leakage from the quantum well and improve the crystalline quality of the quantum well. The lasers are capable of operating at high powers with high reliability for longer lifetimes than are obtainable with laser structures emitting the same wavelength range which require the use of aluminum in the active region.