Abstract:
Systems and methods for targeting specific cell types by selective application of ultrasonic harmonic excitation at a resonance frequency (“oncotripsy”) for the specific cell types are presented. The systems and the methods result in permeabilization, lysis, and/or death of the targeted specific cell types by using ultrasonic harmonic excitations that have a frequency and a pulse duration specifically tuned to disrupt nuclear membranes of the targeted specific cell types by inducing a destructive vibrational response therein while leaving non-targeted cell types intact. Target cells may be neoplastic.
Abstract:
Systems and methods for targeting specific cell types by selective application of ultrasonic harmonic excitation at their resonance frequency (“oncotripsy”) are presented. The systems and methods result in the permeabilization, lysis, and/or death of targeted cell types by using ultrasonic harmonic excitations that have their frequency and pulse duration specifically tuned to disrupt the nuclear membrane of the targeted cells types by inducing a destructive vibrational response therein while leaving non-targeted cell types intact. Target cells may be neoplastic.
Abstract:
Materials and Methods for implementing engineered aggregates in metamaterials are provided. The engineered aggregates may be tuned to oscillate resonantly under the influence of an external force improving the dynamic performance of the metamaterial by impeding dynamic excitation. The engineered aggregate generally comprise a multilayer resonant structure having at least a relatively heavy inner core surrounded by at least a compliant coating layer. The geometry and stiffness of the relative layers can be tuned to engineer a desired resonant frequency response within the aggregate for a chosen frequency range. The engineered aggregates are disposed in a matrix material to form a metamaterial. The engineered aggregates may be disposed within a mortar matrix to form a concrete metamaterial suitable for use, for example, in structural applications, including bunkers, shelters, etc.
Abstract:
Systems and methods for targeting specific cell types by selective application of ultrasonic harmonic excitation at their resonance frequency (“oncotripsy”) are presented. The systems and methods result in the lysis of targeted cell types by using ultrasonic harmonic excitations that have been specifically tuned to disrupt the nuclear membrane of the targeted cells types by inducing a destructive vibrational response therein while leaving non-targeted cell types intact, The target cells types may be cancerous cells.
Abstract:
Materials and methods for implementing engineered aggregates in metamaterials are provided. The engineered aggregates may be tuned to oscillate resonantly under the influence of an external force improving the dynamic performance of the metamaterial by impeding dynamic excitation. The engineered aggregate generally comprise a multilayer resonant structure having at least a relatively heavy inner core surrounded by at least a compliant coating layer. The geometry and stiffness of the relative layers can be tuned to engineer a desired resonant frequency response within the aggregate for a chosen frequency range. The engineered aggregates are disposed in a matrix material to form a metamaterial. The engineered aggregates may be disposed within a mortar matrix to form a concrete metamaterial suitable for use, for example, in structural applications, including bunkers, shelters, etc.
Abstract:
Systems and methods for targeting specific cell types by selective application of ultrasonic harmonic excitation at their resonance frequency (“oncotripsy”) are presented. The systems and methods result in the lysis of targeted cell types by using ultrasonic harmonic excitations that have been specifically tuned to disrupt the nuclear membrane of the targeted cells types by inducing a destructive vibrational response therein while leaving non-targeted cell types intact. The target cells types may be cancerous cells.
Abstract:
Materials and methods for implementing engineered aggregates in metamaterials are provided. The engineered aggregates may be tuned to oscillate resonantly under the influence of an external force improving the dynamic performance of the metamaterial by impeding dynamic excitation. The engineered aggregate generally comprise a multilayer resonant structure having at least a relatively heavy inner core surrounded by at least a compliant coating layer. The geometry and stiffness of the relative layers can be tuned to engineer a desired resonant frequency response within the aggregate for a chosen frequency range. The engineered aggregates are disposed in a matrix material to form a metamaterial. The engineered aggregates may be disposed within a mortar matrix to form a concrete metamaterial suitable for use, for example, in structural applications, including bunkers, shelters, etc.
Abstract:
A scaffold includes struts that intersect at nodes. In some instances, a cross section of the cores has at least one dimension less than 100 microns. The core can be a solid, liquid or a gas. In some instances, one or more shell layers are positioned on the core.