Abstract:
A magnetic field controlled guidestar for focusing light deep inside scattering media using optical phase conjugation. Compared with the optical and ultrasonic field, the magnetic field has an exceptional penetration depth. The magnetic particle guidestar has a high light-tagging efficiency, good biocompatibility, and a small diameter which enables a sharp and bright focusing deep inside biological tissue. This new method can benefit a wide range of biomedical applications including deep-tissue imaging, neural modulation, and targeted photothermal and photodynamic therapies.
Abstract:
A magnetic field controlled guidestar for focusing light deep inside scattering media using optical phase conjugation. Compared with the optical and ultrasonic field, the magnetic field has an exceptional penetration depth. The magnetic particle guidestar has a high light-tagging efficiency, good biocompatibility, and a small diameter which enables a sharp and bright focusing deep inside biological tissue. This new method can benefit a wide range of biomedical applications including deep-tissue imaging, neural modulation, and targeted photothermal and photodynamic therapies.
Abstract:
Optical wavefront shaping has been the standard technique to control light through scattering media. Implicit in this dominance is the assumption that knowledge of the optical phase is a necessity for optical control through scattering media. In this paper, we challenge this assumption by reporting on an intensity-only approach for light control through (or reflected from) a disordered scattering medium—optical-channel-based intensity streaming (OCIS). Instead of actively tuning the interference between the optical paths via wavefront shaping, OCIS can control light and transmit information through or from scattering media with linear intensity operation, which not only simplifies and speeds up the system but also enables new applications. We experimentally created focus patterns through scattering media in a sub-millisecond timescale with a phase-manipulation-free setup. We also demonstrate that, unlike wavefront shaping, OCIS can readily generate distinct energy null points through scattering media. Finally, we demonstrate that OCIS enables a scattering medium mediated secure optical communication application.
Abstract:
A device for irradiating ocular tissue, including a source of electromagnetic radiation; a beacon scattering the electromagnetic radiation transmitted through an opacity in ocular tissue so as to form scattered electromagnetic radiation; a modulator transmitting output electromagnetic radiation having a field determined from a recording of the scattered electromagnetic radiation transmitted through the opacity, so that the output electromagnetic radiation is transmitted through the opacity to the beacon. The device can be used to treat amblyopia or correct optical aberrations in corneal or lens tissue.
Abstract:
A method for irradiating scattering medium, including modifying a particle's response to electromagnetic radiation irradiating the particle in a scattering medium, wherein the electromagnetic radiation is scattered by the scattering medium, and modulated by the modifying, into scattered electromagnetic radiation comprising a scattered field; forming a phase conjugate field, wherein the phase conjugate field is a phase conjugate of the scattered field; and irradiating the scattering medium with the phase conjugate field, wherein the phase conjugate field forms a focus at a target defined by the particle.
Abstract:
Optical wavefront shaping has been the standard technique to control light through scattering media. Implicit in this dominance is the assumption that knowledge of the optical phase is a necessity for optical control through scattering media. In this paper, we challenge this assumption by reporting on an intensity-only approach for light control through (or reflected from) a disordered scattering medium—optical-channel-based intensity streaming (OCIS). Instead of actively tuning the interference between the optical paths via wavefront shaping, OCIS can control light and transmit information through or from scattering media with linear intensity operation, which not only simplifies and speeds up the system but also enables new applications. We experimentally created focus patterns through scattering media in a sub-millisecond timescale with a phase-manipulation-free setup. We also demonstrate that, unlike wavefront shaping, OCIS can readily generate distinct energy null points through scattering media. Finally, we demonstrate that OCIS enables a scattering medium mediated secure optical communication application.
Abstract:
A device for irradiating ocular tissue, including a source of electromagnetic radiation; a beacon scattering the electromagnetic radiation transmitted through an opacity in ocular tissue so as to form scattered electromagnetic radiation; a modulator transmitting output electromagnetic radiation having a field determined from a recording of the scattered electromagnetic radiation transmitted through the opacity, so that the output electromagnetic radiation is transmitted through the opacity to the beacon. The device can be used to treat amblyopia or correct optical aberrations in corneal or lens tissue.
Abstract:
A method for irradiating scattering medium, including modifying a particle's response to electromagnetic radiation irradiating the particle in a scattering medium, wherein the electromagnetic radiation is scattered by the scattering medium, and modulated by the modifying, into scattered electromagnetic radiation comprising a scattered field; forming a phase conjugate field, wherein the phase conjugate field is a phase conjugate of the scattered field; and irradiating the scattering medium with the phase conjugate field, wherein the phase conjugate field forms a focus at a target defined by the particle.