Abstract:
A network communication device is disclosed. The network communication device includes a circuit board, a network connector, a network chip and a plurality of network magnetic assemblies. The network connector, the network chip and the network magnetic assemblies are disposed on the circuit board. The network magnetic assemblies are electrically connected with the network connector and the network chip, respectively. Each of the network magnetic assemblies includes an Ethernet transformer and at least one inductor. The Ethernet transformer is electrically connected in series with the inductor via a conductive trace of the circuit board. Any two adjacent Ethernet transformers are separately arranged with a gap having a second specific length.
Abstract:
A method of producing an inductor with high inductance includes forming a removable polymer layer on a temporary carrier; forming a structure including a first coil, a second coil, and a dielectric layer on the removable polymer layer; forming a first magnetic glue layer on the removable polymer layer and the structure; removing the temporary carrier; and forming a second magnetic glue layer below the structure and the first magnetic glue layer.
Abstract:
A circuit structure is disclosed, wherein the circuit structure comprises: a substrate comprising a top surface, a bottom surface and lateral surfaces connecting the top surface and the bottom surface; a plurality of conductive layers disposed over the top surface of the substrate, wherein a dielectric layer is disposed between each two adjacent conductive layers, wherein at least one capacitor is formed by a first portion of the plurality of conductive layers with the dielectric layers therebetween, and wherein at least one first inductor is formed by a second portion of the plurality of conductive layers; and at least one conductive pattern layer disposed over at least one of the lateral surface to form at least one second inductor, wherein a third portion of the plurality of conductive layers electrically connects with said at least one capacitor, said at least one first inductor and said at least one second inductor.
Abstract:
A circuit structure is disclosed, wherein the circuit structure comprises: a substrate comprising a top surface, a bottom surface and lateral surfaces connecting the top surface and the bottom surface; a plurality of conductive layers disposed over the top surface of the substrate, wherein a dielectric layer is disposed between each two adjacent conductive layers, wherein at least one capacitor is formed by a first portion of the plurality of conductive layers with the dielectric layers therebetween, and wherein at least one first inductor is formed by a second portion of the plurality of conductive layers; and at least one conductive pattern layer disposed over at least one of the lateral surface to form at least one second inductor, wherein a third portion of the plurality of conductive layers electrically connects with said at least one capacitor, said at least one first inductor and said at least one second inductor.
Abstract:
A network communication device is disclosed. The network communication device includes a circuit board, a network connector, a network chip and a plurality of network magnetic assemblies. The network connector, the network chip and the network magnetic assemblies are disposed on the circuit board. The network magnetic assemblies are electrically connected with the network connector and the network chip, respectively. Each of the network magnetic assemblies includes an Ethernet transformer and at least one inductor. The Ethernet transformer is electrically connected in series with the inductor via a conductive trace of the circuit board. Any two adjacent Ethernet transformers are separately arranged with a gap having a second specific length.
Abstract:
A network communication device is disclosed. The network communication device includes a circuit board, a network connector, a network chip and a plurality of network magnetic assemblies. The network connector, the network chip and the network magnetic assemblies are disposed on the circuit board. The network magnetic assemblies are electrically connected with the network connector and the network chip, respectively. Each of the network magnetic assemblies includes an Ethernet transformer and at least one inductor. The Ethernet transformer is electrically connected in series with the inductor via a conductive trace of the circuit board. The spaced distance or a path length of the conductive trace between the Ethernet transformer and the inductor of the at least one network magnetic assembly is less than a first specific length.
Abstract:
A connecting structure includes a flexible flat cable. The flexible flat cable includes a first end portion, a second end portion, a connecting portion, a first pad region, a second pad region and a slot. The connecting portion is connected between the first end portion and the second end portion. The first pad region is disposed on the first end portion. The second pad region is disposed on the second end portion. The slot is formed in the connecting portion. The slot is extended along a length direction of the flexible flat cable. The flexible flat cable is a laminated structure including at least one set of signal trace pattern and at least one shielding structure. The at least one shielding structure correspondingly surrounds the at least one set of signal trace pattern in the connecting portion.
Abstract:
A network communication device is disclosed. The network communication device includes a circuit board, a network connector, a network chip and a plurality of network magnetic assemblies. The network connector, the network chip and the network magnetic assemblies are disposed on the circuit board. The network magnetic assemblies are electrically connected with the network connector and the network chip, respectively. Each of the network magnetic assemblies includes an Ethernet transformer and at least one inductor. The Ethernet transformer is electrically connected in series with the inductor via a conductive trace of the circuit board. The spaced distance or a path length of the conductive trace between the Ethernet transformer and the inductor of the at least one network magnetic assembly is less than a first specific length.
Abstract:
An electronic component is disclosed, the electronic component comprising: a conductive structure, comprising a plurality of conductive layers separated by a plurality of insulating layers, wherein the plurality of conductive layers and the plurality of insulating layers are stacked in a vertical direction, wherein the plurality of conductive layers forms at least one coil, wherein each of the coil is formed along the vertical direction across said plurality of conductive layers, wherein the plurality of insulating layers are not supported by a substrate.
Abstract:
A monolithic power splitter is used to split a pair of input differential signals into two pairs of output differential signals in the present invention. The monolithic power splitter has two input terminals to receive a pair of input differential signals, and it has two one-by-two power splitters integrated in one single chip to split a pair of input differential signals into two pairs of output differential signals with equal power. And, the monolithic power splitter has four output terminals to output two pairs of output differential signals. In one embodiment, the first one-by-two power splitter and the second one-by-two power splitter are made on the same surface of the substrate. In another embodiment, the first one-by-two power splitter and the second one-by-two power splitter are made on opposite surfaces of the substrate. The monolithic power splitter can be used as a power combiner based on the reciprocal property of the power splitter circuit.