Abstract:
Techniques which provide scalable techniques for managing multicast traffic in interconnected IP fabric data centers. More specifically, embodiments presented herein disclose an aggregated source technique used to address scalability issues for interconnected IP fabric data centers as well as disclose a secondary rendezvous point technique used to address backbone network (S, G) multicast state scalability. Additionally, embodiments disclosed herein include an approach for border leaf load balancing based on group destination addresses used by VTEPs.
Abstract:
A method is provided in one example embodiment and includes acquiring at a local network element information regarding a remote network element via a control protocol distribution method and refraining from instantiating the remote VTEP for the remote network element on the local network element until unicast traffic from the local network element to the remote network element via an overlay network has begun. The method may further include detecting unicast traffic from the local network element to the remote network element and subsequent to the detecting, instantiating the remote VTEP for the remote network element on the local network element. Some embodiments may include detecting cessation of the unicast traffic from the local network element to the remote network element and subsequent to the detecting cessation, uninstantiating the remote VTEP for the remote network element from the local network element.
Abstract:
Coexistence and migration of legacy and VXLAN networks may be provided. A first anchor leaf switch and a second anchor leaf switch may detect that they can reach each other over a Virtual Extensible Local Area Network (VXLAN) overlay layer 2 network. In response to detecting that they can reach each other over the VXLAN, the second anchor leaf switch may block VLANs mapped to the VXLAN's VXLAN Network Identifier (VNI) on the second anchor leaf switch's ports connecting to spine routers. In addition, the first anchor leaf switch and the second anchor leaf switch may detect that they can reach each other over a physical layer 2 network. In response to detecting that they can reach each other over a physical layer 2 network, the second anchor leaf switch may block Virtual Extensible Local Area Network (VXLAN) segments at the second anchor leaf switch.
Abstract:
Coexistence and migration of legacy and VXLAN networks may be provided. A first anchor leaf switch and a second anchor leaf switch may detect that they can reach each other over a Virtual Extensible Local Area Network (VXLAN) overlay layer 2 network. In response to detecting that they can reach each other over the VXLAN, the second anchor leaf switch may block VLANs mapped to the VXLAN's VXLAN Network Identifier (VNI) on the second anchor leaf switch's ports connecting to spine routers. In addition, the first anchor leaf switch and the second anchor leaf switch may detect that they can reach each other over a physical layer 2 network. In response to detecting that they can reach each other over a physical layer 2 network, the second anchor leaf switch may block Virtual Extensible Local Area Network (VXLAN) segments at the second anchor leaf switch.
Abstract:
A method is provided in one example embodiment and includes acquiring at a local network element information regarding a remote network element via a control protocol distribution method and refraining from instantiating the remote VTEP for the remote network element on the local network element until unicast traffic from the local network element to the remote network element via an overlay network has begun. The method may further include detecting unicast traffic from the local network element to the remote network element and subsequent to the detecting, instantiating the remote VTEP for the remote network element on the local network element. Some embodiments may include detecting cessation of the unicast traffic from the local network element to the remote network element and subsequent to the detecting cessation, uninstantiating the remote VTEP for the remote network element from the local network element.