Abstract:
Methods, network devices and computer readable media are disclosed for traffic-engineered forwarding through a new form of bit indexed explicit replication. In one embodiment, a method includes receiving, at an ingress node of a network, a message associated with a message flow, obtaining a message bit array corresponding to the message flow, encapsulating the message with the message bit array to form an encapsulated message, and forwarding the encapsulated message into the network. Bit positions in the message bit array are assigned to separate segments of a path or tree in the network, and an explicit path or tree for the message flow is defined as an end to end connection of multiple segments assigned bit positions having a first bit value in the message bit array.
Abstract:
Methods and network devices are disclosed for failure protection in traffic-engineered bit indexed explicit replication networks. In one embodiment, a method includes determining a protected link or node in a network, where the protected link or node is included in a designated path to be taken by a message through the network to a destination node, the designated path is encoded in a message bit array carried by the message, and assigned bit positions in the message bit array represent respective network links along the designated path. The method further includes determining a backup path to the destination node from a feeder node adapted to forward a message carrying the message bit array into the protected link or node, and populating an entry in a path update table stored at the feeder node. In one embodiment a network device includes a network interface and a processor configured to carry out the methods.
Abstract:
Methods, network devices and computer readable media are disclosed for traffic-engineered forwarding through a new form of bit indexed explicit replication. In one embodiment, a method includes receiving, at an ingress node of a network, a message associated with a message flow, obtaining a message bit array corresponding to the message flow, encapsulating the message with the message bit array to form an encapsulated message, and forwarding the encapsulated message into the network. Bit positions in the message bit array are assigned to separate segments of a path or tree in the network, and an explicit path or tree for the message flow is defined as an end to end connection of multiple segments assigned bit positions having a first bit value in the message bit array.
Abstract:
Methods and network devices are disclosed for failure protection in traffic-engineered bit indexed explicit replication networks. In one embodiment, a method includes receiving at a node in a network a message comprising a message bit array, where bit positions in the message bit array correspond to respective links in the network. The method further includes evaluating a bit value at a bit position in the message bit array, where the bit position corresponds to a network link represented in a forwarding table for the node, checking for a failure state of the link represented in the forwarding table, and, responsive to a determination of a failure state of the link, modifying one or more bit values in the message bit array. In one embodiment a network device includes a network interface, a memory configured to store a forwarding table, and a processor configured to carry out the methods.
Abstract:
A trust relationship is established at a first network connected device between the first network connected device and a second network connected device. A communication session is established between the first network connected device and a third network connected device, wherein the third network connected device lacks a trust relationship with the second network connected device. A message is sent from the first network connected device to establish a communication session between the third network connected device and the second network connected device based on the trust relationship between the first network connected device and the second network connected device.
Abstract:
Methods and network devices are disclosed for traffic-engineered forwarding through a new form of bit indexed explicit replication. In one embodiment, a method includes receiving at a first node in a network a message comprising a message bit array, and comparing bit values at one or more bit positions in the message bit array to one or more entries in a forwarding table stored at the first node. The one or more bit positions correspond in this embodiment to links in the network. This embodiment of the method further includes forwarding the message over a link represented in the forwarding table if a result of the comparing indicates that the link is included in a path to be taken by the message. In a further embodiment of the method, the message is a multicast message and forwarding the message comprises forwarding a replica of the multicast message.
Abstract:
A trust relationship is established at a first network connected device between the first network connected device and a second network connected device. A communication session is established between the first network connected device and a third network connected device, wherein the third network connected device lacks a trust relationship with the second network connected device. A message is sent from the first network connected device to establish a communication session between the third network connected device and the second network connected device based on the trust relationship between the first network connected device and the second network connected device.
Abstract:
To avoid user error and breaking operations, administration and management (OAM), the control plane for implementing OAM is automatically generated by network devices without user input. This control plane is hidden from the user, preventing any configuration that may bring down the connectivity for OAM.
Abstract:
Methods and network devices are disclosed for failure protection in traffic-engineered bit indexed explicit replication networks. In one embodiment, a method includes receiving at a node in a network a message comprising a message bit array, where bit positions in the message bit array correspond to respective links in the network. The method further includes evaluating a bit value at a bit position in the message bit array, where the bit position corresponds to a network link represented in a forwarding table for the node, checking for a failure state of the link represented in the forwarding table, and, responsive to a determination of a failure state of the link, modifying one or more bit values in the message bit array. In one embodiment a network device includes a network interface, a memory configured to store a forwarding table, and a processor configured to carry out the methods.
Abstract:
A method of routing multicast traffic in a computer network is disclosed. The method comprises associating a plurality of multicast group addresses on a network device with respective multicast routing topologies. A network device and a network are also disclosed.