Abstract:
A radiographic imaging apparatus having a detector, a radiation source array, and a control processor is configurable to individually energize the radiation sources. A collimator having a number of apertures is movable to either a first or second position in a path of the radiation source array. In one position, the apertures are aligned with a first subset of the radiation sources. In another position, the apertures are aligned with a second subset of the radiation sources. The second subset of the radiation sources define substantially the same radiation field that is defined by the first subset of the radiation sources. A transport apparatus translates the collimator member between at least the first and second positions according to an electronic instruction.
Abstract:
An imaging system includes an x-ray assembly having one or more x-ray sources configured to be energized at multiple positions. A control program energizes the one or more x-ray sources in a programmed sequence and controls the timing of the sequence.
Abstract:
A radiographic imaging apparatus having a detector, a radiation source array, and a control processor is configurable to individually energize the radiation sources. A collimator having a number of apertures is movable to either a first or second position in a path of the radiation source array. In one position, the apertures are aligned with a first subset of the radiation sources. In another position, the apertures are aligned with a second subset of the radiation sources. The second subset of the radiation sources define substantially the same radiation field that is defined by the first subset of the radiation sources. A transport apparatus translates the collimator member between at least the first and second positions according to an electronic instruction.
Abstract:
An imaging system includes an x-ray assembly having one or more x-ray sources configured to be energized at multiple positions. A control program energizes the one or more x-ray sources in a programmed sequence and controls the timing of the sequence.
Abstract:
Radiographic imaging systems and/or methods embodiments capable of both tomosynthesis x-ray imaging and general projection radiography x-ray imaging can include a single x-ray source assembly including a plurality of distributed x-ray sources, where at least one of the plurality of distributed x-ray sources is configured to output a beam sufficient for standard projection radiography, and each of at least two of the plurality of distributed x-ray sources is configured to output a beam at a lower radiation dose sufficient for tomosynthesis. In one embodiment, radiographic imaging systems and/or methods embodiments can include a single x-ray source; a first collimator that is configured to be adjustable for at least two dimensions; and a second collimator that is configured to provide fixed collimation. In one embodiment, a single x-ray source can include a single radiation shield or a single vacuum chamber.
Abstract:
Laser sources are configured to project planar laser beams in a preselected geometric relationship. A laser detector is configured to detect, locate, and identify the planar laser beams.
Abstract:
An x-ray imaging system, such as a mobile radiography unit, includes a plurality of stationary carbon nanotube based x-ray sources to be selectively energized. A circuit enables a selected subset of the radiation sources to be energized while another subset may be disabled. A light source may be attached to the support arm of the mobile radiography unit and a source of electric power is configured to energize the light source upon operator contact with the unit. The plurality of stationary x-ray sources may be used to capture a plurality of 2-D projection images of a subject to reconstruct a 3-D image thereof. The 3-D image is used to generate a 2-D projection image of the subject.
Abstract:
An imaging system includes an x-ray assembly having one or more x-ray sources configured to be energized at multiple positions. A control program energizes the one or more x-ray sources in a programmed sequence and controls the timing of the sequence.
Abstract:
Radiographic imaging systems and/or methods embodiments capable of both tomosynthesis x-ray imaging and general projection radiography x-ray imaging can include a single x-ray source assembly including a plurality of distributed x-ray sources, where at least one of the plurality of distributed x-ray sources is configured to output a beam sufficient for standard projection radiography, and each of at least two of the plurality of distributed x-ray sources is configured to output a beam at a lower radiation dose sufficient for tomosynthesis. In one embodiment, radiographic imaging systems and/or methods embodiments can include a single x-ray source; a first collimator that is configured to be adjustable for at least two dimensions; and a second collimator that is configured to provide fixed collimation. In one embodiment, a single x-ray source can include a single radiation shield or a single vacuum chamber.
Abstract:
An x-ray imaging system, such as a mobile radiography unit, includes a plurality of stationary carbon nanotube based x-ray sources to be selectively energized. A circuit enables a selected subset of the radiation sources to be energized while another subset may be disabled. A light source may be attached to the support arm of the mobile radiography unit and a source of electric power is configured to energize the light source upon operator contact with the unit. The plurality of stationary x-ray sources may be used to capture a plurality of 2-D projection images of a subject to reconstruct a 3-D image thereof. The 3-D image is used to generate a 2-D projection image of the subject.