Abstract:
A method and system is includes configurable carrier phase noise shaping. A fractional phase locked loop (PLL) uses a bank of delta-sigma modulators (DSM) to generate fractional ratios of the reference signal frequency. The bank of delta-sigma modulators provides for dynamic adjustments in the fractional PLL based phase noise performance of the communications network. The bank of DSMs is designed such that they have different and conflicting phase noise profiles. The communication network parameters are monitored and utilized for selecting a specific DSM from the bank of DSMs which most closely resembles a desired communications network phase noise profile.
Abstract:
Methods, systems, and apparatuses are described for compensating for an undesired fractional spur due to a PLL in a communication system. The communication system includes a time-to-digital converter (TDC) that is configured to execute in parallel to the PLL. The TDC is configured to determine a phase difference between a reference frequency and an output oscillation signal provided by the PLL. The phase difference is received by a processor to estimate particular characteristics of the undesired fractional spur, and the estimate of the characteristics is used to construct an estimate of the undesired fractional spur.
Abstract:
Methods, systems, and apparatuses are described for compensating for an undesired fractional spur due to a PLL in a communication system. The communication system includes a time-to-digital converter (TDC) that is configured to execute in parallel to the PLL. The TDC is configured to determine a phase difference between a reference frequency and an output oscillation signal provided by the PLL. The phase difference is received by a processor to estimate particular characteristics of the undesired fractional spur, and the estimate of the characteristics is used to construct an estimate of the undesired fractional spur.