Abstract:
The apparatus serves to apply a label to a container through the use of an electrooptical device that senses the orientation of the container and sends the signal to a control device that directs the rotation of the containers to a target orientation that allows the label to be applied at a predetermined position on the container. A method for applying a label to a container is also disclosed.
Abstract:
Diffusely scattering defects are to be detected in items made from transparent material, e.g. drinks bottles. To this end, the items (10) are inspected using a light source (12) and a camera (16), a contrast pattern (14) being arranged between the light source (12) and the item to be inspected. Diffusely scattering defects are detected by a decrease in the contrast of the contrast pattern (14) reproduced through the item.
Abstract:
The device for the detection of diffusely scattering impurities (18) in containers (10) that have a transparent wall (16) has a light source (12), which produces one or more light beams (14) for illuminating the wall (16), and an optical detecting device (22) for production of an image of the illuminated wall (16), with the light source (12) and the optical detecting device (22) arranged according to dark-field detection. The light source (12) is designed so that the light beam or beams (14) that it emits have an intensity distribution over their cross-section with an intensity contrast at one point at least within their cross-section.
Abstract:
The device for separating individual or a plurality of rotationally symmetric containers (11) from a stream of rotationally symmetric containers (10) conveyed under backup pressure comprises a first conveyor path (12) for the stream of containers (10) and a second conveyor path (18) for removal of the separated containers (11), the second conveyor path (18) branching off at a separation point (16) from the first conveyor path (12). The first conveyor path (12) bends at the separation point (16) at an acute angle. A dividing wedge (20) is disposed between the first and the second conveyor (12, 18). A first deflection slide (22) is disposed at the separation point (16) next to the first conveyor path (12) at the side of the branching of the second conveyor path (18) and is extensible towards the tip of the dividing wedge (20), and a second deflection slide (24) is disposed at the separation point (16) next to the first conveyor path (12) at the side of the bend of the first conveyor path (12) and is extensible towards the tip of the dividing wedge (20).
Abstract:
To establish the integrity of a product located in a container a given feature of the product in the container is determined by means of a first measurement method in which a first physical property of the product is ascertained, the given feature is additionally ascertained at least directly or by means of a second measurement method which is based on a second physical property which is different from the first physical property, and the values obtained by means of the two measurement methods of the given feature are compared. If the product is a drink in a bottle and if the given feature is the fill level, the first measurement method can consist of the fill level being measured by means of absorption of an X-ray beam, and the second measurement method can consist of the change effected by the bottle in the resonant frequency of a high-frequency oscillating circuit being measured.
Abstract:
An apparatus for selective diversion of objects such as containers, packing and packing units of different mass. The apparatus has a first transport device for the objects and a diversion device for diverting predetermined objects from the first transport device onto a second transport device. The intensity with which the objects are diverted from the first transport device onto the second transport device is controlled by means of a controlled device.
Abstract:
To ascertain the fill level of vessels (10), mechanical vibrations are produced in a vessel wall (30) and the vibration pattern is analysed. The vibration is produced in a vessel wall (30) which is contacted by the contents to an extent which varies depending on the fill level, and the vibration pattern is then evaluated to discover to what extent the vessel wall (30) is contacted on the inside by the contents. For this, the decay time, the frequency, the intensity and/or the time integral of the intensity can be evaluated or the site of the maximum intensity of the mechanical vibrations in the vessel wall can be ascertained.
Abstract:
Rotationally symmetrical containers (10) are transported under backup pressure on a conveying surface (12) limited laterally by railings (14). For rotating the containers (10) at a predetermined site along the conveying surface (12), one of two consecutive containers (10) is arranged stable against one railing (14) and the other stable against the other railing (14) in the direction of conveyance after the site at which the containers are to rotate.
Abstract:
Rotationally symmetrical containers (10) are transported under backup pressure on a conveying surface (12) limited laterally by railings (14). For rotating the containers (10) at a predetermined site along the conveying surface (12), one of two consecutive containers (10) is arranged stable against one railing (14) and the other stable against the other railing (14) in the direction of conveyance after the site at which the containers at which the containers are to rotate. An inspection station for inspecting the sidewalls of the containers (10) is provided that has a radiation source (18) arranged adjacent to the conveying surface (12) and a detection device (20) arranged on the opposite side.
Abstract:
For the purpose of testing deformable containers (2) for tightness, a negative pressure is generated in the container (2) and the internal pressure is then measured. The negative pressure is generated by deformation of the container (2). A sealing strip (6) is set on the container opening (8) in order to maintain the negative pressure in the container (2). In non-tight containers, the pressure increases relatively rapidly again to the ambient pressure.