摘要:
A beam-shaping element is provided to shape RF feed energy for reflector-based antennas. The RF beam-shaping element is located between the primary reflector and the antenna feed and configured to direct RF energy from the feed away from a blockage created by the feed itself towards unblocked regions of the primary reflector. The beam-shaping element allows for a simplified feed design. The feed may comprise one or more feed elements, each comprising a radiating element and a feed to the radiating element such as a cavity-backed slot radiator and stripline trace. In a monopulse tracking system, each quadrant may include only a single feed element. In common aperture systems, the RF beam-shaping element may be formed on only the rear surface of the secondary reflector that allows transmission at the predefined RF wavelength while reflecting energy of a second predetermined wavelength to another sensor.
摘要:
A system and method for providing electromagnetic imaging through electroquasistatic sensing contains an electromagnetic sensor for imaging a sample. The electromagnetic sensor contains drive/sense electronics and a pixelated sensor array having an array of capacitive sensor electrodes that source electric fields that interact with the sample, and wherein the electrodes are individually drivable by the drive/sense electronics in a coordinated manner to establish a desired temporal and spatial pattern in which electrical properties of the electrodes are used to generate an image. Other components of the system include a precision motion controller, sensor head and associated electronics, and a computer for performing data acquisition and signal inversion.
摘要:
A system and method for providing electromagnetic imaging through electroquasistatic sensing contains an electromagnetic sensor for imaging a sample. The electromagnetic sensor contains drive/sense electronics and a pixelated sensor array having an array of capacitive sensor electrodes that source electric fields that interact with the sample, and wherein the electrodes are individually drivable by the drive/sense electronics in a coordinated manner to establish a desired temporal and spatial pattern in which electrical properties of the electrodes are used to generate an image. Other components of the system include a precision motion controller, sensor head and associated electronics, and a computer for performing data acquisition and signal inversion.
摘要:
A stripline includes a first ground plane; a second ground plane; a first signal trace located between the first ground plane and the second ground plane; and a center via that extends through the stripline and is in electrical contact with the first ground plane and the first signal trace.
摘要:
A system for providing electromagnetic imaging through magnetoquasistatic sensing contains an electromagnetic sensor for imaging a sample. The electromagnetic sensor contains drive/sense electronics and a pixelated sensor array having an array of inductive loops that source magnetic fields that interact with the sample, wherein the inductive loops are individually drivable by the drive/sense electronics in a coordinated manner to establish a desired temporal and spatial pattern in which electrical properties of the inductive loops are used to generate an image. Other components of the system include a precision motion controller, sensor head and associated electronics, and a computer for performing data acquisition and signal inversion.
摘要:
A stripline includes a first ground plane; a second ground plane; a first signal trace located between the first ground plane and the second ground plane; and a center via that extends through the stripline and is in electrical contact with the first ground plane and the first signal trace.
摘要:
A system for providing electromagnetic imaging through magnetoquasistatic sensing contains an electromagnetic sensor for imaging a sample. The electromagnetic sensor contains drive/sense electronics and a pixelated sensor array having an array of inductive loops that source magnetic fields that interact with the sample, wherein the inductive loops are individually drivable by the drive/sense electronics in a coordinated manner to establish a desired temporal and spatial pattern in which electrical properties of the inductive loops are used to generate an image. Other components of the system include a precision motion controller, sensor head and associated electronics, and a computer for performing data acquisition and signal inversion.