Cuy/MMgOx interfacial catalyst for selective alkyne hydrogenation and its preparation method

    公开(公告)号:US20220234036A1

    公开(公告)日:2022-07-28

    申请号:US17335019

    申请日:2021-05-31

    摘要: Cuy/MMgOx interfacial catalyst for selective alkyne hydrogenation and its preparation method are disclosed. The preparation method of the catalyst includes: the mixture of salt and alkali solution is nucleated momentarily by nucleation/crystallization isolation method, preparing the composite metal hydroxide CuyMMg4-LDHs as precursor, which has typical hexagonal morphology of the double hydroxide; the precursor is topologically transformed by heat treatment to produce unsaturated oxide; the catalyst with Cuy-MMgOx interface structure is prepared by separating and electronically modifying Cu particles. By adjusting the ratio of Cu2+/M3+ in LDHs, the electronic and geometric structure of Cuy-MMgOx interface can be flexibly controlled, thus enhancing the reaction activity, product selectivity and stability. The catalyst can be used in the selective hydrogenation of various alkynes in the fields of petrochemical and fine chemical industry, with the outstanding catalytic activity and C═C double bond selectivity. The catalyst also has good reusability.

    Cu
    2.
    发明授权
    Cu 有权

    公开(公告)号:US11691138B2

    公开(公告)日:2023-07-04

    申请号:US17335019

    申请日:2021-05-31

    摘要: Cuy/MMgOx interfacial catalyst for selective alkyne hydrogenation and its preparation method are disclosed. The preparation method of the catalyst includes: the mixture of salt and alkali solution is nucleated momentarily by nucleation/crystallization isolation method, preparing the composite metal hydroxide CuyMMg4-LDHs as precursor, which has typical hexagonal morphology of the double hydroxide; the precursor is topologically transformed by heat treatment to produce unsaturated oxide; the catalyst with Cuy-MMgOx interface structure is prepared by separating and electronically modifying Cu particles. By adjusting the ratio of Cu2+/M3+ in LDHs, the electronic and geometric structure of Cuy-MMgOx interface can be flexibly controlled, thus enhancing the reaction activity, product selectivity and stability. The catalyst can be used in the selective hydrogenation of various alkynes in the fields of petrochemical and fine chemical industry, with the outstanding catalytic activity and C═C double bond selectivity. The catalyst also has good reusability.