摘要:
Cuy/MMgOx interfacial catalyst for selective alkyne hydrogenation and its preparation method are disclosed. The preparation method of the catalyst includes: the mixture of salt and alkali solution is nucleated momentarily by nucleation/crystallization isolation method, preparing the composite metal hydroxide CuyMMg4-LDHs as precursor, which has typical hexagonal morphology of the double hydroxide; the precursor is topologically transformed by heat treatment to produce unsaturated oxide; the catalyst with Cuy-MMgOx interface structure is prepared by separating and electronically modifying Cu particles. By adjusting the ratio of Cu2+/M3+ in LDHs, the electronic and geometric structure of Cuy-MMgOx interface can be flexibly controlled, thus enhancing the reaction activity, product selectivity and stability. The catalyst can be used in the selective hydrogenation of various alkynes in the fields of petrochemical and fine chemical industry, with the outstanding catalytic activity and C═C double bond selectivity. The catalyst also has good reusability.
摘要:
Cuy/MMgOx interfacial catalyst for selective alkyne hydrogenation and its preparation method are disclosed. The preparation method of the catalyst includes: the mixture of salt and alkali solution is nucleated momentarily by nucleation/crystallization isolation method, preparing the composite metal hydroxide CuyMMg4-LDHs as precursor, which has typical hexagonal morphology of the double hydroxide; the precursor is topologically transformed by heat treatment to produce unsaturated oxide; the catalyst with Cuy-MMgOx interface structure is prepared by separating and electronically modifying Cu particles. By adjusting the ratio of Cu2+/M3+ in LDHs, the electronic and geometric structure of Cuy-MMgOx interface can be flexibly controlled, thus enhancing the reaction activity, product selectivity and stability. The catalyst can be used in the selective hydrogenation of various alkynes in the fields of petrochemical and fine chemical industry, with the outstanding catalytic activity and C═C double bond selectivity. The catalyst also has good reusability.
摘要:
The present invention belongs to the synthesis technology field of inorganic functional materials, and particularly provides a self-balanced high-pressure and high-shear autoclave and its application in the preparation of layered double hydroxides (LDHs). In this invention, by imbedding the handpiece of emulsification mill into the autoclave, and by taking the motor driving system outside of the autoclave, the pressure of the autoclave can be highly stable by the use of self-balanced seal gland. These characters solve the problem that the typical emulsification mill cannot be used in high-pressure system, and ensure the crystallization under the high-pressure and high-shear conditions. Such autoclave takes the advantages of additional equipment, and eliminates the volume effect in the amplification process. By the use of this new autoclave, the reaction time can be shorten from 24 hours to 2-6 hours, the reaction temperature can be reduced from 180° C. to 140° C. The LDHs products with small particle size and narrow size distribution are obtained. These results are better than those prepared at the laboratory level.
摘要:
The purpose of the invention is to provide a supported bimetallic core-shell structure catalyst and its preparation method. Supporter, metal salt and reducing agent solution are mixed to synthesize the catalyst M@PdM/ZT by using a one-step synthesis method, wherein the active metal particle M@PdM as core-shell structure, M Is the core representing one of the Ag, Pt, Au and Ir. ZT is the supporter, representing one of hydrotalcite (Mg2Al-LDH), alumina (Al2O3) and silica (SiO2). By changing the temperature and the reaction time to control the kinetic behavior of the reduction of two kinds of metal ions to realize the construction of core-shell structure. Active metal particle composition and shell thickness are regulated by controlling metal ion concentration. The bimetallic core-shell catalyst prepared by this method showed excellent selectivity and stability in acetylene selective hydrogenation and anthraquinone hydrogenation.
摘要:
The present invention provides a supported metal catalyst with synergistic sites, a preparation method therefor and an application thereof. The preparation method of this catalyst is to utilize the unsaturated cubane-like structure, M cation with catalytic activity is introduced into the cluster core unit. By using the vertex vacancy as the capturing center, and adjusting the impregnation temperature to maximize the loading of the cluster precursor, as well as depending on the electrostatic adsorption of the support and the confinement of the cluster structural unit, the number of S vacancies and the distance between S vacancies and Miso sites are effectively controlled through liquid phase reduction and atmosphere treatment at room temperature to obtain supported X3MSx/Al2O3 catalyst with Miso-Vs synergistic sites. The method of the present invention achieves the joint enhancement of the activity, product selectivity, and stability of unsaturated carbon oxygen bond selective hydrogenation, carbon chlorine bond selective hydrogenation dechlorination, and carbon hydrogen bond dehydrogenation reactions. This catalyst is mainly used in various catalytic reaction processes in the fields of petrochemical, fine chemical, environmental chemical, and other fields. It has outstanding catalytic performance, excellent activity, selectivity, and good recyclability, and is easy to recover and reuse.