Abstract:
The invention relates to a method for selecting compounds which can be used as additives in photopolymer formulations for producing light holographic media, and to photopolymer formulations which contain at least one softener which are selected according to the claimed method. The invention also relates to the use of photopolymer formulations for producing holographic media.
Abstract:
The invention relates to a method for producing a holographic optical element by providing a recording stack comprising at least one recording element laminated on at least one supporting element, irradiating at least a part of the recording stack with at least one recording beam in an irradiating step, wherein during the irradiating step, the recording stack bends, providing a bending deviation threshold for the recording stack, and adjusting at least one first process parameter such that an expected maximum bending deviation of the recording stack does not exceed the bending deviation threshold, wherein the at least one first process parameter influences the bending behaviour of the recording stack during the irradiating step.
Abstract:
The present disclosure relates to a thin film type controlled viewing window back light unit and a thin flat type Controlled Viewing window Display using the same. The present disclosure suggests a thin film type back light unit which can include: a base film having a width and a length, and including a high refractive film and a low refractive film stacked on the high refractive film; an incident pattern disposed at one side of a bottom surface of the base film; a reflective pattern disposed at an opposite side apart from the one side with the length of the bottom surface of the base film, and covering the width of the opposite side; a light radiating pattern disposed on an upper surface of the base film; a holographic film for controlling a viewing-window disposed on the light radiating pattern; and a light source being apart from the incident pattern, and providing an incident light to the incident pattern.
Abstract:
The invention relates to a method for producing a holographic optical element by providing a recording stack comprising at least one recording element laminated on at least one supporting element, irradiating at least a part of the recording stack with at least one recording beam in an irradiating step, wherein during the irradiating step, the recording stack bends, providing a bending deviation threshold for the recording stack, and adjusting at least one first process parameter such that an expected maximum bending deviation of the recording stack does not exceed the bending deviation threshold, wherein the at least one first process parameter influences the bending behaviour of the recording stack during the irradiating step.
Abstract:
The invention relates to a layered construction with a protective layer and a photoexposed photopolymer layer, the protective layer being obtainable by reaction of a mixture comprising or consisting of at least one radiation-curing resin I), a polyfunctional radiation-curing resin II) and a photoinitiator system III), the radiation-curing resin I) comprising ≦5 wt. % of compounds having a weight-average molecular weight 1000, the polyfunctional radiation-curing resin II) comprising or consisting of at least one acrylate having at least two radiation-curing groups, and the mixture comprising at least 55 wt. % of the radiation-curing resin I) and not more than 35 wt. % of the polyfunctional radiation-curing resin II). The invention further relates to a method for producing a layered construction of this kind, and also to its use.
Abstract:
The invention relates to a method for producing a security element having a holographic layer in which a hologram is arranged, characterized by at least the following steps: a) providing the holographic layer; b) exposing the holographic layer at least in sections via a master hologram to produce a hologram copy in the holographic layer; e) printing the holographic layer at least in sections with an ink, forming a printed feature, wherein the ink comprises the melt of a dye or a colorless component or a solvent and a dye dissolved therein or a colorless component dissolved therein; d) fixing the exposed holographic layer to produce the hologram in the holographic layer, wherein the printed feature and the hologram are arranged in the holographic layer such that the printed feature and the hologram overlap at least in sections. The invention further relates to a security feature which is produced or can be produced by said method.
Abstract:
The invention relates to a method for selecting compounds which can be used as additives in photopolymer formulations for producing light holographic media, and to photopolymer formulations which contain at least one softener which are selected according to the claimed method. The invention also relates to the use of photopolymer formulations for producing holographic media.
Abstract:
The subject matter of the invention is a method for producing illuminated, holographic media comprising a photopolymer formulation having the adjustable mechanical modulus GUV. A further subject matter of the invention is an illuminated, holographic medium that can be obtained by means of the method according to the invention.