Abstract:
A media converter to enable Ethernet in thin-profile mobile devices. The media converter can be designed to interface with a thin-profile mobile device via a short-reach Ethernet link and to interface with a network device via a conventional Ethernet link. Protocol conversion is therefore obviated, while accommodating a low-profile Ethernet port in the mobile device.
Abstract:
Communication devices may determine routes for packets based on packet marking, routing parameters and/or costs associated with routes. A route may be selected and the packets may be communicated via the selected route. The parameters may comprise service class, real time compression, packet preemption, quality measurements, tier bypass and/or power usage information. The costs may comprise capacity, efficiency and/or performance information for power usage, bandwidth, memory and/or processing. The marking may comprise traffic type, user device capabilities, service class, quality measurements, latency requirements and/or power usage information. Endpoint devices, software applications and/or service providers may insert the marking into packets. Routes may be determined and/or selected based on shortest path bridging, audio video bridging, the marking, the routing parameters and/or the costs. Parameters and/or costs may be received and/or discovered from communication devices. Packets and/or the marking may be parsed and/or inspected. Costs may be based on routing parameters.
Abstract:
An environment, such as an industrial environment, may include a control network with multiple network devices. A network device in the control network may have groups of communication ports servicing upstream and/or downstream network traffic. The group of communication ports may have, for example, two communication ports. Transmission parameters of the communication ports may be dynamically configured based on a first network port configuration and a second network port configuration for the first and second communication ports, respectively. The first network port configuration may have different transmission parameters than the second network port configuration. The first network port may forward data packets over the control network according to the first network port configuration, while the second network port may forward data packets to the next hop device utilizing the second network port configuration.
Abstract:
A device in an industrial environment may adapt communications to account for industrial noise in the industrial environment. The device may send a first communication to a destination device in the industrial environment using a first communication technology. The device may access noise prediction data for the industrial environment, and the noise prediction data may indicate predicted noise for one or more portions of the industrial environment, including a communication pathway to the destination device using the first communication technology. The device may adapt a subsequent communication to the destination device to account for the predicted noise along the communication pathway.
Abstract:
A temporary work group system may include one or more network devices and one or more working devices. The network device can allocate an access point in a network to provide network access to a temporary work group. Working devices may be selectively identified by the network device as being available for inclusion in the temporary work group based on a first predetermined criteria that includes proximity to the access point and authentication of each of the working devices. Selectively identified working devices can be associated with the temporary work group based on a second predetermined criteria that includes a respective relative location of the working devices and respective functionality of the working devices. The system may preempt working devices from association with the work group session until such devices meet both the first predetermined criteria and the second predetermined criteria.
Abstract:
A system for sensing in an industrial environment includes a processing node configured to receive a first sensor data from a first sensor and a second sensor data from a second sensor, both of which are disposed in the industrial environment. The processing node is further configured to process randomly sampled data from at least one of the first sensor data and the second sensor data to generate processed sensor data that includes the randomly sampled data. The processing node further configured to identify data of interest from the processed sensor data based on comparison of the processed sensor data with a sampling dictionary of predetermined information. The processing node further configured to filter and assemble the identified data of interest to create a set of compressed data, and transmit the set of compressed data to a predetermined destination.
Abstract:
A temporary work group system may include one or more network devices and one or more working devices. The network device can allocate an access point in a network to provide network access to a temporary work group. Working devices may be selectively identified by the network device as being available for inclusion in the temporary work group based on a first predetermined criteria that includes proximity to the access point and authentication of each of the working devices. Selectively identified working devices can be associated with the temporary work group based on a second predetermined criteria that includes a respective relative location of the working devices and respective functionality of the working devices. The system may preempt working devices from association with the work group session until such devices meet both the first predetermined criteria and the second predetermined criteria.
Abstract:
A device implementing a dynamic local media access control (MAC) address assignment system may include at least one processor circuit. The at least one processor circuit may be configured to transmit an address request packet including a proposed MAC address and a device identifier to devices on a network. The at least one processor circuit may be further configured to determine whether any reply packets are received that indicate that another device has claimed the MAC address prior to expiration of a probe timer. The at least one processor circuit may be further configured to transmit an address claim packet including the MAC address when the probe timer expires before any reply packets are received from other devices. The at least one processor circuit may be further configured to communicate over the network using the proposed MAC address after transmitting the address claim packet.
Abstract:
A media converter to enable Ethernet in thin-profile mobile devices. The media converter can be designed to interface with a thin-profile mobile device via a short-reach Ethernet link and to interface with a network device via a conventional Ethernet link. Protocol conversion is therefore obviated, while accommodating a low-profile Ethernet port in the mobile device.
Abstract:
A device in an industrial environment may adapt communications to account for industrial noise in the industrial environment. The device may send a first communication to a destination device in the industrial environment using a first communication technology. The device may access noise prediction data for the industrial environment, and the noise prediction data may indicate predicted noise for one or more portions of the industrial environment, including a communication pathway to the destination device using the first communication technology. The device may adapt a subsequent communication to the destination device to account for the predicted noise along the communication pathway.