Abstract:
An optical signal noise reduction circuit, an optical signal noise reduction method and a display panel are provided in the present disclosure. The optical signal noise reduction circuit includes a reference line, a comparison detection circuitry and a photoelectric signal read line. An electric signal on the photoelectric signal read line includes a noise electric signal and a photoelectric signal. The reference line is configured to sense the noise electric signal on the photoelectric signal read line, to generate a corresponding second electric signal. The comparison detection circuitry is connected to the reference line and the photoelectric signal read line, and configured to acquire the photoelectric signal in accordance with the electric signal on the photoelectric signal read line and the electric signal on the reference line.
Abstract:
A human sleep monitoring device, including a signal processing module (5), a reflecting film (3), a detection light emitting module (1) and a receiving module (4), wherein the detection light emitting module (1) is configured to emit detection light to the human body; the reflecting film (3) is configured to guide light, which is emitted by the detection light emitting module and not absorbed by the human body, to the receiving module (4); the receiving module (4) is configured to receive the light guided by the reflecting film (3); and the signal processing module (5) is configured to obtain physiological sign data of the human body according to intensity information of the light received by the receiving module (4). The device can monitor the sleep state of the human body in real time, and improve body sleep quality. A human sleep monitoring method is also provided.
Abstract:
A touch panel and a driving method thereof, and a touch device are provided. The touch panel includes a first base substrate, a second base substrate, a first electrode, a piezoelectric layer and a second electrode. The second base substrate is opposite to the first base substrate. The first electrode is on a side of the first base substrate facing away from the second base substrate, and is configured to provide a reference. The piezoelectric layer is between the first electrode and the first base substrate. The second electrode is between the first base substrate and the second base substrate. The piezoelectric layer is configured to generate first charges on a side thereof close to the second electrode upon being pressed, and the second electrode is configured to couple the first charges at a pressed position and output a touch signal.
Abstract:
A training apparatus is disclosed, comprising: a top structure, a bottom structure, and a traction structure disposed between the top structure and the bottom structure, and wherein the traction structure is configured to be retractable along an axial direction of the top or bottom structure to achieve relative movement between the top structure and the bottom structure.
Abstract:
The present application provides a fingerprint sensor. The fingerprint sensor includes an array of a plurality of optical fibers. Each of the plurality of optical fibers has a first end and second end opposite to the first end. Each of the plurality of optical fibers is configured to allow an incident light to enter into the second end and an exit light to exit from the second end. Each of the plurality of optical fibers includes a fiber core; a fiber Bragg grating in the fiber core; and a reflective film on the first end.
Abstract:
A touch substrate and a display device are provided. The touch substrate comprises: a base; an insulation layer, a common electrode layer, and a common electrode signal line and a plurality of touch drive electrode signal lines in the same layer, the common electrode layer comprises a plurality of touch drive electrodes, a plurality of common electrodes and a common electrode connection strip, each of the touch drive electrodes comprises a plurality of touch drive sub-electrodes, the common electrode connection strip is connected with the common electrode signal line through a plurality of first via-holes, each of the touch drive sub-electrodes is connected with one of the touch drive electrode signal lines through a second via-hole, semi-holes are provided at positions of the insulation layer corresponding to positions of the common electrodes and/or the touch drive sub-electrodes.
Abstract:
Disclosed are an electronic signboard and a wall hanging device. The electronic signboard includes a display device and a wall hanging device. The display device is provided with a first fitting portion, and the wall hanging device is provided with a second fitting portion detachably connected to the first fitting portion. The wall hanging device is further provided a fixing surface via which the wall hanging device is fixed to a mounting base.
Abstract:
This disclosure relates to the field of display technologies, and discloses a backlight source and a display device, and the backlight source includes a back plate, a glue frame installed on the back plate, a light-guiding plate located in an accommodating space surrounded by the glue frame, and an optical film material located on the side of the light-guiding plate away from the back plate, and arranged overlapping with the light-guiding plate, wherein at least one of sides of the light-guiding plate is a light incidence side, and other sides are non-light-incidence sides; and at least one of the non-light-incidence sides, and the glue frame form together a light-eliminating structure configure to eliminate at least a part of light rays exiting from the non-light-incidence side.
Abstract:
The present application discloses an alignment device and an alignment method for accurately aligning goldfingers of a flexible printed circuit board with electrodes of a substrate to be aligned under a manual pressing mode. The alignment device comprises a light regulating member and a light source provided at a side of the light regulating member. The light regulating member comprises a plurality of shading regions and a plurality of transmitting regions alternately provided along a length direction of the light regulating member. The plurality of transmitting regions have shapes identical to those of electrodes on a substrate to be aligned, and positions of the plurality of transmitting regions are corresponding to those of the plurality of electrodes on the substrate to be aligned.
Abstract:
The present disclosure provides 3D glasses, a 3D display system and a 3D display method. The 3D display system of the present disclosure includes a 3D display device and 3D glasses. The 3D glasses include: a 3D image presenting module configured to present a 3D image provided by a 3D display device to a user, a gesture information acquiring module configured to acquire gesture information of the user and supply the gesture information to a gesture information processing module, the gesture information processing module configured to generate processing information according to the gesture information and supply the processing information to an information transmitting module, and the information transmitting module configured to transmit the processing information to the 3D display device.