Abstract:
A structural panel comprises phenolic skins formed over a honeycomb core. The skins are bonded to the honeycomb under vacuum and heat, providing a panel capable of forming to desired shapes. The panel is 30% lighter than aluminum honeycomb panels of similar thickness, equivalent in strength to aluminum honeycomb panels, and meets the very stringent fire, smoke and toxicity norms of the industry. Additionally the product also reduces the thermal load, has very high heat resistance and is corrosion resistant. The use of this product is not limited to flat profiles, but can also be used to mould double curved or other three dimensional profiles.
Abstract:
A method of producing, for example, handles for using in rolling stock or other transport situations, employs a flexible core mould that is coated with an impregnated glass fibre. The coated core mould is placed into a tool for curing, whereupon the rubber core is pulled out of the center of the resulting handle member after curing. The method helps create 3D shapes of any form and cross section in a cost effective manner and using a standardized methodology and process. Further, the method enables creation of a hollow and lightweight part. The method allows use of standard glass fiber instead of more specialized braided fibre of the prior art.
Abstract:
A structural panel comprises phenolic skins formed over a honeycomb core. The skins are bonded to the honeycomb under vacuum and heat, providing a panel capable of forming to desired shapes. The panel is 30% lighter than aluminum honeycomb panels of similar thickness, equivalent in strength to aluminum honeycomb panels, and meets the very stringent fire, smoke and toxicity norms of the industry. Additionally the product also reduces the thermal load, has very high heat resistance and is corrosion resistant. The use of this product is not limited to flat profiles, but can also be used to mold double curved or other three dimensional profiles.