Abstract:
A modular water quality analysis system for steam electric power generating plants is disclosed which includes a novel single shell multicircuit heat exchanger having means to individually vary the rate of flow of cooling water through each of the multiple circuits therein so that the single heat exchanger can simultaneously cool a plurality of samples entering it at widely differing high inlet temperatures to the same lower range of outlet temperatures. The heat exchanger has a physical construction such that it can be mounted on top of the system rack which contains a plurality of modules of apparatus for accepting water or steam samples from various test points in the power generating system, reducing the pressure and temperature thereof, directing and metering the flow of samples, and performing analyses for such water characteristic as pH, specific or cation conductivity, dissolved oxygen, sodium content and the like. The fact that the single shell heat exchanger can be mounted on top of the system rack and thereby replace a plurality of individually manifolded and valved heat exchangers formerly mounted at the back of the rack makes possible a considerable saving in cost, space and weight, a greater flexibility in system layout design, together with greatly improved access to the system components for adjustment and maintenance purposes, and faster instrument response due to shorter sample tubing runs. This flexibility of design in the modular system also permits the same basic apparatus to be adapted to a large variety of different sizes and types of power generating plants having different analysis requirements thereby providing a custom installation for each plant which nonetheless retains all of the advantages of standardized design and equipment.