Abstract:
The present invention relates to an apparatus of the loop Venturi reactor type for the continuous reaction of liquids with gases, in particular for hydrogenations, oxidations or acetylations, e.g. for the preparation of toluenediamine by hydrogenation of dinitrotoluene, and a process for the continuous reaction of liquid reactants with gaseous reactants in the apparatus. In the apparatus of the invention, the diversion of an internal circulatory flow in the reactor is effected by means of a diversion pan which is arranged underneath a heat exchanger.
Abstract:
The invention relates to an apparatus for carrying out mass transfer processes, comprising a column having at least two inlet pipes for introducing a gaseous phase, where separation-active internals are accommodated in the column and a column section extends from the at least two inlet pipes to the separation-active internals, in which section a coverage of a cross-sectional area of the column is less than 25%, based on the total cross-sectional area, and where the at least two inlet pipes have a height offset which corresponds to not more than three times an inlet pipe diameter and the at least two inlet pipes are at an angle (α) of from 60° to 150° to one another and have asymmetry with respect to one another. The invention further relates to a use of the apparatus and also a method for designing the apparatus.
Abstract:
In a process for removing CO2 from a fluid stream by means of an aqueous absorption medium, a) the fluid stream is introduced into a first absorption zone and treated with partially regenerated absorption medium, b) the treated fluid stream is treated with regenerated absorption medium in a second absorption zone, giving a fluid stream which has been freed of CO2 and a loaded absorption medium, c) the loaded absorption medium is depressurized in a first flash vessel to a pressure of from 1.2 to 3 bar absolute, giving a sub-partially regenerated absorption medium and a first CO2-comprising gas stream, d) the sub-partially regenerated absorption medium is depressurized in a second flash vessel to a pressure of from 1 to 1.2 bar absolute, giving a partially regenerated absorption medium and a water vapor-comprising, second CO2-comprising gas stream, e) a substream of the partially regenerated absorption medium is fed into the first absorption zone and a further substream of the partially regenerated absorption medium is fed into a stripper in which the partially regenerated absorption medium is thermally regenerated, with regenerated absorption medium and a third CO2-comprising gas stream being obtained and the stripper being operated at a pressure which is at least 0.9 bar higher than the pressure in the first flash vessel, f) the regenerated absorption medium is recirculated to the second absorption zone, g) the water vapor-comprising, second CO2-comprising gas stream is compressed by means of a jet pump and brought into direct heat exchange contact with the loaded absorption medium in the first flash vessel, with the jet pump being operated by means of the third CO2-comprising gas stream. The latent heat of the water vapor-comprising gas streams remains in the process and the use of a costly compressor is dispensable.