摘要:
A method for segmenting image data within a data processing system includes acquiring an image. One or more seed points are established within the image. An advection vector field is computed based on image influences and user input. A dye concentration is determined at each of a plurality of portions of the image that results from a diffusion of dye within the computed advection field. The image is segmented into one or more regions based on the determined dye concentration for the corresponding dye.
摘要:
A method for segmenting image data within a data processing system includes acquiring an image. One or more seed points are established within the image. An advection vector field is computed based on image influences and user input. A dye concentration is determined at each of a plurality of portions of the image that results from a diffusion of dye within the computed advection field. The image is segmented into one or more regions based on the determined dye concentration for the corresponding dye.
摘要:
A method for recovering a contour using combinatorial optimization includes receiving an input image, initializing functions for gradient f, smooth background g, and contour r, determining an optimum of the gradient f of a region R in the input image, extending the optimum of the gradient f of region R to a complement of R, determining an optimum of the smooth background function g for a region Q corresponding to the complement of R, extending the optimum of the smooth background function g of region Q to a complement of Q, and determining an optimum contour r according to the optimum of the gradient f and the optimum of the smooth background function g.
摘要:
A method for processing image data for segmentation includes receiving image data. One or more seed points are identified within the image data. Intensity and texture features are computer based on the received image data and the seed points. The image data is represented as a graph wherein each pixel of the image data is represented as a node and edges connect nodes representative of proximate pixels of the image data and establishing edge weights for the edges of the graph using a classifier that takes as input, one or more of the computed image features. Graph-based segmentation such as segmentation using the random walker approach may then be performed based on the graph representing the image data.
摘要:
A method for recovering a contour using combinatorial optimization includes receiving an input image, initializing functions for gradient f, smooth background g, and contour r, determining an optimum of the gradient f of a region R in the input image, extending the optimum of the gradient f of region R to a complement of R, determining an optimum of the smooth background function g for a region Q corresponding to the complement of R, extending the optimum of the smooth background function g of region Q to a complement of Q, and determining an optimum contour r according to the optimum of the gradient f and the optimum of the smooth background function g.
摘要:
Values for ultrasound acquisition parameters are altered in a manifold space. The number of parameters to be set is reduced using a manifold. Virtual parameters different than the acquisition parameters are used to alter the greater number of acquisition parameters. In a further use, optimum image settings may be obtained in an automated system by measuring image quality for feeding back to virtual parameter adjustment.
摘要:
An MR imaging system uses multiple RF coils for acquiring corresponding multiple image data sets of a slice or volume of patient anatomy. An image data processor comprises at least one processing device conditioned for, deriving a first set of weights for weighted combination of k-space data of the multiple image data sets for generating a calibration data set comprising a subset of k-space data of composite image data representing the multiple image data sets. The image data processor uses the calibration data set in generating a first MR image data set, deriving the parameters of a probability distribution in response to the first set of weights and the first MR image data set and deriving a second set of weights and second MR image data set together using the probability distribution.
摘要:
An MR imaging system uses the multiple RF coils for acquiring corresponding multiple image data sets of the slice. An image data processor comprises at least one processing device conditioned for, generating a composite MR image data set representing a single image in a single non-iterative operation by performing a weighted combination of luminance representative data of individual corresponding pixels of the multiple image data sets in providing an individual pixel luminance value of the composite MR image data set. The image data processor reduces noise in the composite MR image data set by generating a reduced set of significant components in a predetermined transform domain representation of data representing the composite image to provide a de-noised composite MR image data set. An image generator comprises at least one processing device conditioned for, generating a composite MR image using the de-noised composite MR image data set.
摘要:
Automatic prostate localization in T2-weighted MR images facilitate labor-intensive cancer imaging techniques. Methods and systems to accurately segment the prostate gland in MR images are provided and address large variations in prostate anatomy and disease, intensity inhomogeneities, and artifacts induced by endorectal coils. A center of the prostate is automatically detected with a boosted classifier trained on intensity based multi-level Gaussian Mixture Model Expectation Maximization (GMM-EM) segmentations of the raw MR images. A shape model is used in conjunction with Multi-Label Random Walker (MLRW) to constrain the seeding process within MLRW.
摘要:
An MR imaging system uses multiple RF coils for acquiring corresponding multiple image data sets of a slice or volume of patient anatomy. An image data processor comprises at least one processing device conditioned for, deriving a first set of weights for weighted combination of k-space data of the multiple image data sets for generating a calibration data set comprising a subset of k-space data of composite image data representing the multiple image data sets. The image data processor uses the calibration data set in generating a first MR image data set, deriving the parameters of a probability distribution in response to the first set of weights and the first MR image data set and deriving a second set of weights and second MR image data set together using the probability distribution.