摘要:
Systems and methods for reconstructing images using a hierarchically semiseparable (“HSS”) solver to compactly represent the inverse encoding matrix used in the reconstruction are provided. The reconstruction method includes solving for the actual inverse of the encoding matrix using a direct (i.e., non-iterative) HSS solver. This approach is contrary to conventional reconstruction methods that repetitively evaluate forward models (e.g., compressed sensing or parallel imaging forward models).
摘要:
An MR imaging system uses multiple RF coils for acquiring corresponding multiple image data sets of a slice or volume of patient anatomy. An image data processor comprises at least one processing device conditioned for, deriving a first set of weights for weighted combination of k-space data of the multiple image data sets for generating a calibration data set comprising a subset of k-space data of composite image data representing the multiple image data sets. The image data processor uses the calibration data set in generating a first MR image data set, deriving the parameters of a probability distribution in response to the first set of weights and the first MR image data set and deriving a second set of weights and second MR image data set together using the probability distribution.
摘要:
An MR imaging system uses multiple RF coils for acquiring corresponding multiple image data sets of a slice or volume of patient anatomy. An image data processor comprises at least one processing device conditioned for, deriving a first set of weights for weighted combination of k-space data of the multiple image data sets for generating a calibration data set comprising a subset of k-space data of composite image data representing the multiple image data sets. The image data processor uses the calibration data set in generating a first MR image data set, deriving the parameters of a probability distribution in response to the first set of weights and the first MR image data set and deriving a second set of weights and second MR image data set together using the probability distribution.
摘要:
In a magnetic resonance apparatus and operating method therefor, and in a processor that is programmed to design RF pulses for operating such a magnetic resonance apparatus, the RF pulses are designed to mitigate off-resonance effects caused by inhomogeneity of the basic (B0) magnetic field in the magnetic resonance apparatus. The RF pulses of a parallel transmit array are designed with different spatial phase distributions, that deviate from a constant phase from pulse-to-pulse, with the absolute value of the difference between respective spatial phase distributions of any two successively radiated RF pulses corresponding to the off-resonance that is caused by B0-inhomogeneity during the time between the radiation of the successive pulses. Additionally, or separately, currents supplied to the shim coils can be taken into account in the design of the RF pulses as an additional degree of freedom, with the shimming of the basic magnetic field produced by the shim currents deviating from shim currents designed to ideally produce a homogenous B0 field.
摘要:
A method of determining a decoupling matrix of a decoupling system for an array of coils of a parallel transmission magnetic resonance imaging (MRI) system includes obtaining impedance matrix data for the array of coils without the decoupling system, determining, based on the impedance matrix data for the array of coils, an objective function representative of deviation from a decoupled operating condition for the array of coils in which the array of coils are decoupled via the decoupling system, and defining, with a processor, a decoupling matrix representative of a set of impedances of the decoupling system with an iterative procedure that optimizes elements of the decoupling matrix to minimize the objective function and reach the decoupled operating condition.
摘要:
A system for parallel image processing in MR imaging comprises multiple MR imaging RF coils for individually receiving MR imaging data representing a slice of patient anatomy. An MR imaging system uses the multiple RF coils for acquiring corresponding multiple image data sets of the slice. An image data processor comprises at least one processing device conditioned for, deriving a first set of weights for generating a calibration data set comprising a subset of k-space data of composite image data representing the multiple image data sets. The at least one processing device uses the calibration data set in generating a first MR image data set, deriving a second set of weights using the calibration data set and the generated first MR image data set and uses the second set of weights in generating a second MR image data set representing a single image having a reduced set of data components relative to the first composite MR image data set.
摘要:
A system and method for magnetic resonance imaging (MRI) and static field (B0) shimming. A coil system includes a conductive loop configured to be arranged proximate to a region of interest (ROI). The coil system also includes an alternating current (AC) circuit electrically connecting the conductive loop to an AC electrical connection configured to be coupled to an MRI system to communicate medical imaging signals received by the conductive loop from the ROI during a medical imaging procedure to the MRI system. The coil system further includes a direct current (DC) circuit electrically connecting the conductive loop to a DC electrical connection configured to be coupled to a DC power source and a plurality of circuit components configured to block DC signals from reaching the AC electrical connection in order to produce a spatially varying static magnetic field for shimming inhomogenieties of the static field.
摘要:
A method of determining a decoupling matrix of a decoupling system for an array of coils of a parallel transmission magnetic resonance imaging (MRI) system includes obtaining impedance matrix data for the array of coils without the decoupling system, determining, based on the impedance matrix data for the array of coils, an objective function representative of deviation from a decoupled operating condition for the array of coils in which the array of coils are decoupled via the decoupling system, and defining, with a processor, a decoupling matrix representative of a set of impedances of the decoupling system with an iterative procedure that optimizes elements of the decoupling matrix to minimize the objective function and reach the decoupled operating condition.
摘要:
A system and method is provided for simultaneously designing a radiofrequency (“RF”) pulse waveform and a magnetic field gradient waveform in a magnetic resonance imaging (“MRI”) system. The method includes determining a desired pattern of RF excitation and determining, from the desired pattern of RF excitation, a plurality of k-space locations indicative of the magnetic field gradient waveform and a plurality of complex weighting factors indicative of RF energy deposited at each k-space location. The method also includes calculating, from the determined k-space locations, the magnetic field gradient waveform and calculating, from the complex weighting factors, the RF pulse waveform that will produce the desired pattern of RF excitation when produced with the calculated magnetic field gradient.
摘要:
A system and method for producing an image indicative of characteristics of a radiofrequency (“RF”) coil with a magnetic resonance imaging (“MRI”) system is disclosed. The method includes acquiring MR signals while performing a pulse sequence with the MRI system and driving the RF coil at a selected transmission power. This process is repeated a plurality of times to drive the RF coil at a different transmission powers during each repetition. A plurality of images are reconstructed from the acquired MR signals and an image indicative of RF reception characteristics of the RF coil is produced from the reconstructed images. Subsequently, an image indicative of RF transmission characteristics of the RF coil is produced using the image indicative of the RF receiver response. More specifically, only one data acquisition is necessary for each RF coil element to produce the image indicative of the RF transmission characteristics for that coil element.