Abstract:
Novel, simple methods are presented directed to the synthesis of nanofibers of polyaniline and substituted derivatives. The production of these fibers is achieved via various methods by controlling the concentration of aniline monomer or substituted aniline derivatives or an oxidant in the reaction medium and maintaining said concentration at a level much lower than conventional polyaniline synthesis methods. Methods are disclosed relating to the use of a permeable membrane to control the release of a monomer and/or oxidant as well as a bulk polymerization method.
Abstract:
The present teachings are directed toward composite materials containing nanotubes and an electrically conductive polymer, poly(3,4-ethylenedioxythiopene), and devices, such as capacitors, containing the composite materials.
Abstract:
Electric field driven devices and methods of operation are provided. Each device use one or more doped conducting polymers to provide multifunctional responses to applied electric field. The device includes an electrically conductive layer operative to provide a gate contact for the device; a conducting polymer layer operative to provide source and drain contacts for the device, and an active layer; and an insulating polymer layer formed between the electrically conductive layer and the conducting polymer layer, wherein the layers in combination allow the device to be operative to perform at least two of a plurality of response functions.
Abstract:
The present invention includes methods for fabricating polymer light emitting devices by screen-printing. These light emitting devices use silver paste as the top electrode, eliminating the use of evaporated low work function metal. This is made possible by the presence of a buffer layer such as the sulfonated polyaniline layer in the structure of SCALE devices. These devices allow a very inexpensive and fast means to form stable top electrodes for large-scale polymer light emitting device fabrication.
Abstract:
This invention relates to spintronic devices—and electronic devices comprising them, such as spin valves, spin tunnel junctions and spin transistors—which utilize a layer comprised of an array of aligned carbon nanontubes. A spintronic device includes, a bottom electrode, a first ferromagnetic layer, a CNT array, a second ferromagnetic layer and a top electrode.