Abstract:
An electronic device with one or more processors and memory includes a procedure for sharing information with a third party recipient. In some embodiments, the device receives a speech input from a first user, the speech input specifying a second user different from the first user, and an information item to be shared with the second user. In response to the speech input, the device initiates a background process during which a digital assistant searches for the information item and causes the information item to be sent to the second user without further review and instruction from the first user.
Abstract:
An electronic device with one or more processors and memory includes a procedure for sharing information with a third party recipient. In some embodiments, the device receives a speech input from a first user, the speech input specifying a second user different from the first user, and an information item to be shared with the second user. In response to the speech input, the device initiates a background process during which a digital assistant searches for the information item and causes the information item to be sent to the second user without further review and instruction from the first user.
Abstract:
In one or more embodiments, a first device such as a mobile phone can establish a wireless connection with second device, and the second device can act as a bridge between the first device and a peripheral device, such as a printer, so that the first device need not establish a secure pairing or other type of direct connection with the peripheral device. The second device provides a profile of the peripheral to the first device. The first device can then use the profile to access the peripheral device via the second device, with the second device passing data between the first device and the peripheral identified by the profile. This bridging feature simplifies the process of using the peripheral devices, since no secure pairing or other configuration procedure is needed to enable the first device to access the peripheral.
Abstract:
An electronic device with one or more processors and memory includes a procedure for using a digital assistant to automatically respond to incoming communications. In some embodiments, the device obtains a speech input from a user, and, in response to obtaining the speech input, the device determines whether the speech input includes instructions for performing a specified action in response to receipt of a subsequent incoming communication from one or more specified senders. After storing the instructions, the device obtains an incoming communication from a respective sender. The device determines whether the respective sender is one of the one or more specified senders, and, upon determining that the respective sender is one of the one or more specified senders, the device performs the specified action in accordance with the instructions and thereafter automatically deleting the instructions.
Abstract:
In one or more embodiments, a first device such as a mobile phone can establish a wireless connection with second device, and the second device can act as a bridge between the first device and a peripheral device, such as a printer, so that the first device need not establish a secure pairing or other type of direct connection with the peripheral device. The second device provides a profile of the peripheral to the first device. The first device can then use the profile to access the peripheral device via the second device, with the second device passing data between the first device and the peripheral identified by the profile. This bridging feature simplifies the process of using the peripheral devices, since no secure pairing or other configuration procedure is needed to enable the first device to access the peripheral.
Abstract:
An electronic device with one or more processors and memory includes a procedure for using a digital assistant to automatically respond to incoming communications. In some embodiments, the device obtains a speech input from a user, and, in response to obtaining the speech input, the device determines whether the speech input includes instructions for performing a specified action in response to receipt of a subsequent incoming communication from one or more specified senders. After storing the instructions, the device obtains an incoming communication from a respective sender. The device determines whether the respective sender is one of the one or more specified senders, and, upon determining that the respective sender is one of the one or more specified senders, the device performs the specified action in accordance with the instructions and thereafter automatically deleting the instructions.
Abstract:
A speech output to be provided to a user of a device is received. Thereafter, it is determined if the device is currently receiving speech input from a user. Upon determining that the device is not currently receiving speech input from the user, the speech output to the user is provided. On the other hand, upon determining that the device is receiving speech input from the user it is determined if provision of the speech output is urgent. When the speech output is urgent, the speech output is provided to the user. When the speech output is not urgent, provision of the speech output to the user is stayed.