Abstract:
Systems and processes for converting speech-to-text are provided. In one example process, speech input can be received. A sequence of states and arcs of a weighted finite state transducer (WFST) can be traversed. A negating finite state transducer (FST) can be traversed. A virtual FST can be composed using a neural network language model and based on the sequence of states and arcs of the WFST. The one or more virtual states of the virtual FST can be traversed to determine a probability of a candidate word given one or more history candidate words. Text corresponding to the speech input can be determined based on the probability of the candidate word given the one or more history candidate words. An output can be provided based on the text corresponding to the speech input.
Abstract:
Systems and processes for converting speech-to-text are provided. In one example process, speech input can be received. A sequence of states and arcs of a weighted finite state transducer (WFST) can be traversed. A negating finite state transducer (FST) can be traversed. A virtual FST can be composed using a neural network language model and based on the sequence of states and arcs of the WFST. The one or more virtual states of the virtual FST can be traversed to determine a probability of a candidate word given one or more history candidate words. Text corresponding to the speech input can be determined based on the probability of the candidate word given the one or more history candidate words. An output can be provided based on the text corresponding to the speech input.
Abstract:
Systems and processes are disclosed for recognizing speech using a weighted finite state transducer (WFST) approach. Dynamic grammars can be supported by constructing the final recognition cascade during runtime using difference grammars. In a first grammar, non-terminals can be replaced with a, weighted phone loop that produces sequences of mono-phone words. In a second grammar, at runtime, non-terminals can be replaced with sub-grammars derived from user-specific usage data including contact, media, and application lists. Interaction frequencies associated with these entities can be used to weight certain words over others. With all non-terminals replaced, a static recognition cascade with the first grammar can be composed with the personalized second grammar to produce a user-specific WEST. User speech can then be processed to generate candidate words having associated probabilities, and the likeliest result can be output.