Abstract:
This invention concerns the transmitting and receiving of digital media packets, such as audio and video channels and lighting instructions. In particular, the invention concerns the transmitting and receiving of redundant media packet streams. Samples are extracted (556) from a first (904) and second (906) media packet stream. The extracted samples are written to a buffer (910) based on the output time of each sample (556). Extracted samples having the same output time are written to the same location in the buffer. Both media packet streams are simply processed all the way to the buffer without any particular knowledge that one of the packet streams is actually redundant. This simplifies the management of the redundant packet streams, such as eliminating the need for a “fail-over” switch and the concept of an “active stream”. The location is the storage space allocated to store one sample. The extracted sample written to the location may be written over another extracted sample from a different packet stream previously written to the location. These extracted samples written to the same location may be identical.
Abstract:
Methods and apparatuses for accessing, via a public network, a device connected to a privately addressed network are disclosed. One method comprises the steps of automatically assigning a globally unique name to the device, which resolves to a gateway of the privately addressed network, automatically associating the globally unique name with a private address of the device, and automatically routing communications comprising the globally unique name to the device based on the private address. The name and the address of the gateway may be registered with a Domain Name System (DNS) in response to a request received from the device. If a communication comprising the globally unique name is received for the device from another device via the Internet, a private address for the device dependent on the globally unique name may be automatically obtained for automatically routing the communication to the device.
Abstract:
This invention concerns the transmitting and receiving of digital media packets, such as audio and video channels and lighting instructions. In particular, the invention concerns the transmitting and receiving of redundant media packet streams. Samples are extracted (556) from a first (904) and second (906) media packet stream. The extracted samples are written to a buffer (910) based on the output time of each sample (556). Extracted samples having the same output time are written to the same location in the buffer. Both media packet streams are simply processed all the way to the buffer without any particular knowledge that one of the packet streams is actually redundant. This simplifies the management of the redundant packet streams, such as eliminating the need for a “fail-over” switch and the concept of an “active stream”, The location is the storage space allocated to store one sample. The extracted sample written to the location may be written over another extracted sample from a different packet stream previously written to the location. These extracted samples written to the same location may be identical.
Abstract:
The present disclosure is related to transmitting and receiving media channels, such as audio and video channels. These channels may be transmitted as packets from one or more transmitting devices to one or more receiving devices for playout. Certain embodiments of the present disclosure include systems, methods, and computer-readable media for determining latency of a data network for synchronized playout of received signals. Additionally, certain embodiments of the present disclosure include systems, methods, and computer-readable media for synchronizing playout among devices connected to a data network.
Abstract:
In certain aspects, the present disclosure is related to devices, methods, systems and/or computer-readable media for use in an isochronous media network in which media devices connected to a network employ one or more synchronization signal to regulate or facilitate the transmission of media signals through the network. In certain aspects, the present disclosure is also related to devices, methods, systems and/or computer-readable media for use in a larger unified, or substantially unified, isochronous network created from aggregating local isochronous media networks in which media devices connected to a network employ a one or more synchronization signal distributed from a local master clock to regulate or facilitate the transmission of media signals.
Abstract:
The present disclosure is related to transmitting and receiving media channels, such as audio and video channels. These channels may be transmitted as packets from one or more transmitting devices to one or more receiving devices for playout. Certain embodiments of the present disclosure include systems, methods, and computer-readable media for determining latency of a data network for synchronized playout of received signals. Additionally, certain embodiments of the present disclosure include a systems, methods, and computer-readable media for synchronizing playout among devices connected to a data network.
Abstract:
This invention concerns the transmitting and receiving of digital media packets, such as audio and video channels and lighting instructions. In particular, the invention concerns the transmitting and receiving of redundant media packet streams. Samples are extracted (556) from a first (904) and second (906) media packet stream. The extracted samples are written to a buffer (910) based on the output time of each sample (556). Extracted samples having the same output time are written to the same location in the buffer. Both media packet streams are simply processed all the way to the buffer without any particular knowledge that one of the packet streams is actually redundant. This simplifies the management of the redundant packet streams, such as eliminating the need for a “fail-over” switch and the concept of an “active stream”, The location is the storage space allocated to store one sample. The extracted sample written to the location may be written over another extracted sample from a different packet stream previously written to the location. These extracted samples written to the same location may be identical.
Abstract:
In certain aspects, the present disclosure is related to devices, methods, systems and/or computer-readable media for use in an isochronous media network in which media devices connected to a network employ one or more synchronization signal to regulate or facilitate the transmission of media signals through the network. In certain aspects, the present disclosure is also related to devices, methods, systems and/or computer-readable media for use in a larger unified, or substantially unified, isochronous network created from aggregating local isochronous media networks in which media devices connected to a network employ a one or more synchronisation signal distributed from a local master clock to regulate or facilitate the transmission of media signals.
Abstract:
The present disclosure is related to transmitting and receiving media channels, such as audio and video channels. These channels may be transmitted as packets from one or more transmitting devices to one or more receiving devices for playout. Certain embodiments of the present disclosure include systems, methods, and computer-readable media for determining latency of a data network for synchronised playout of received signals. Additionally, certain embodiments of the present disclosure include systems, methods, and computer-readable media for synchronising playout among devices connected to a data network.
Abstract:
This invention concerns the transmitting and receiving of digital media packets, such as audio and video channels and lighting instructions. The network (104) is comprised of at least a transmitter device (110) and a receiving device (112). The controllers (122) and (126) of these devices handle the exchanging of configuration messages between the devices (110) and (112). Using the invention, the user is not required to manually configure the processor to receive media packet streams. Instead, a controller (126) of a receiving device (112) operates to receive information on a user selection of media channels and automatically configure the processor of the transmitter device. Further, the receiving device (112) is able to receive media channels using both unicast and multicast protocols. Media channels can be given textual labels which are unique on the unique (104) and easily identify to the user the actual source of the media channel. Media channels of different formats to be sent on the same net work simultaneous. Further, redundant media channels are easily accommodated.