Abstract:
An amplifier circuit (11) for amplifying electric signals, comprising controllable switching means (2) for generating a block wave signal whose amplitude varies between first and second supply voltage values during operation, filter means (9) for filtering the block wave signal so as to produce an output signal (10). The filter means (9) comprise a self-inductance (16) and a capacitance (17). The amplifier circuit (11) furthermore comprises modulating means (3) for pulse width modulation of the block wave signal by driving the switching means (2) in response to an input signal (16) to be amplified, and correction means (12) for providing from a reference value (Uref) derived from the input signal and an output signal value proportional to the output signal (10) a correction signal for controlling the modulating means (3). In order to correct for interferences in the output signal (10), means (13) are provided for deriving a reference current (Iref) from the input signal (6) as well as means (8) for providing a filter capacitance current proportional to the current though the filter capacitance (17). The correction means (12) are arranged for providing a current correction signal from the reference current (Iref) and the filter capacitance current (18).
Abstract:
A lighting system for operation with a dimmer circuit comprising a triac connected to a load. The load comprises a driver circuit for supplying current to a light source comprising one or more LEDs, the current being determined at least in part by an adjusted setpoint value. The system further comprises a setpoint filter circuit for obtaining a dimmer setpoint value determined at least in part by a setting of the dimmer circuit, and for generating an adjusted setpoint value. The sensitivity of the adjusted setpoint value to changes in the dimmer setpoint value is low at low values of the dimmer setpoint value.
Abstract:
A lighting system for operation with a dimmer circuit comprising a triac connected to a load. The load comprises a driver circuit for supplying current to a light source comprising one or more LEDs, the current being determined at least in part by an adjusted setpoint value. The system further comprises a setpoint filter circuit for obtaining a dimmer setpoint value determined at least in part by a setting of the dimmer circuit, and for generating an adjusted setpoint value. The sensitivity of the adjusted setpoint value to changes in the dimmer setpoint value is low at low values of the dimmer setpoint value.
Abstract:
The invention relates to a dimmer triggering circuit (12) for triggering a dimmer in an alternating current network. The dimmer has a voltage-level detector (15), and a bipolar current source circuit (18). The voltage-level detector (15) detects whether an absolute value of an input voltage of the dimmer triggering circuit is below a threshold value. The bipolar current source circuit (18) provides a current if the voltage detected by the voltage-level detector (15) is below the threshold value. If the voltage detected is not below the threshold value, the bipolar current source circuit is deactivated. The dimmer triggering circuit (12), in operation, dissipates an average power less than 100 mW.
Abstract:
Disclosed is a method for determining the contents of a gas bottle, in particular a liquid gas bottle, comprising the following steps: First of all, the gas bottle is excited by applying a signal to a loudspeaker mounted on said gas bottle. The signal from a microphone mounted on the gas bottle is compared in phase with the signal used for excitation, with the frequency of the signal applied to said loudspeaker being altered continuously, until a resonant frequency is established. This resonant frequency is converted into a filling level of the gas bottle according to a previously determined relationship between the resonant frequency and the filling level. Furthermore, an apparatus is disclosed with which the above-mentioned method may be put into practice.