摘要:
A novel apparatus and method of packet re-sequencing applicable to systems wherein packets are assigned sequence numbers and transmitted over multiple channels with the requirement they be re-ordered at the receiving side. The mechanism is particularly suitable for use in cable systems adapted to implement the DOCSIS 3.0 specification which permits the bonding of a plurality of downstream channels into a single virtual high data rate pipe. In operation, received packets are stored in a memory whereby a pointer to the memory storage location is written into a context table diagram in accordance with the sequence number extracted from the packet. Packets are released in sequence order regardless of the order in which they were received.
摘要:
A novel apparatus and method of packet re-sequencing applicable to systems wherein packets are assigned sequence numbers and transmitted over multiple channels with the requirement they be re-ordered at the receiving side. The mechanism is particularly suitable for use in cable systems adapted to implement the DOCSIS 3.0 specification which permits the bonding of a plurality of downstream channels into a single virtual high data rate pipe. In operation, received packets are stored in a memory whereby a pointer to the memory storage location is written into a context table diagram in accordance with the sequence number extracted from the packet. Packets are released in sequence order regardless of the order in which they were received.
摘要:
Various systems and methods for queue management in computer memory are described herein. A system for implementing a zero thrash cache queue manager includes a processor subsystem to: receive a memory access request for a queue; write data to a queue tail cache line in a cache when the memory access request is to add data to the queue, the queue tail cache line protected from being evicted from the cache; and read data from a current queue head cache line in the cache when the memory access request is to remove data from the queue, the current queue head cache line protected from being evicted from the cache.
摘要:
A system and method are described to provide a next generation cable gateway/modem based on the DOCSIS standard with a scheme to synchronously combine channels in the physical layer to increase overall bit rates for coaxial cable data transmission. The systems and methods synchronize the counters associated with multiple channels, including continuity counters, at the transmitter to zero and then allow the counters on individual channels to increment individually. At the receiver, individual channel delays of individual channels will be thus recognizable based on the information provided by the counters associated with each channel. A buffer at the receiver is informed and used to individually delay one or more of the multiple channels to many up continuity counter values. In this manner, the buffer acts to essentially equalize delays in individual channels with the continuity counter representing the mechanism for specifying the individual delays for the separate channels.
摘要:
A system and method are described to provide a next generation cable gateway/modem based on the DOCSIS standard with a scheme to synchronously combine channels in the physical layer to increase overall bit rates for coaxial cable data transmission. The systems and methods synchronize the counters associated with multiple channels, including continuity counters, at the transmitter to zero and then allow the counters on individual channels to increment individually. At the receiver, individual channel delays of individual channels will be thus recognizable based on the information provided by the counters associated with each channel. A buffer at the receiver is informed and used to individually delay one or more of the multiple channels to marry up continuity counter values. In this manner, the buffer acts to essentially equalize delays in individual channels with the continuity counter representing the mechanism for specifying the individual delays for the separate channels.