Prototypical network algorithms for few-shot learning

    公开(公告)号:US10963754B1

    公开(公告)日:2021-03-30

    申请号:US16144927

    申请日:2018-09-27

    Abstract: Techniques for training an embedding using a limited training set are described. In some examples, the embedding is trained by generating a plurality of vectors from a random sample of the limited set of training data classes using a layer of the particular machine learning classification model, randomly selecting samples from the plurality of vectors into a set of samples, computing at least one distance for each sampled class from a center parameter for the class using the set of samples, generating a discrete probability distribution over the classes for a query point based on distances to a center parameter for each of the classes in the embedding space, calculating a loss value for the modified prototypical network, the calculation of the loss value being for a fixed geometry of the embedding space and including a measure of the difference between distributions, and back propagating.

    Content moderation using object detection and image classification

    公开(公告)号:US11423265B1

    公开(公告)日:2022-08-23

    申请号:US16917721

    申请日:2020-06-30

    Abstract: Methods, systems, and computer-readable media for content moderation using object detection and image classification are disclosed. A content moderation system performs object detection on an input image using one or more object detectors. The object detection finds one or more elements in the input image. The content moderation system performs classification based at least in part on the input image using one or more image classifiers. The classification determines one or more values indicative of one or more content types in the input image. The content moderation system determines one or more scores for one or more content labels corresponding to the one or more content types. At least one of the scores represents a finding of one or more of the content types in the input image. The content moderation system generates output indicating the finding of the one or more of the content types.

    Automated model selection for network-based image recognition service

    公开(公告)号:US11429813B1

    公开(公告)日:2022-08-30

    申请号:US16697662

    申请日:2019-11-27

    Abstract: This disclosure describes automatically selecting and training one or more models for image recognition based upon training and testing (validation) data provided by a user. A service provider network includes a recognition service that may use models to process images and videos to recognize objects in the images and videos, features on the objects in the images and videos, and/or locate objects in the images and videos. The service provider network also includes a model selection and training service that may select one or more modeling techniques based on the objectives of the user and/or the amount of data provided by the user. Based on the selected modeling technique, the model selection and training service selects and trains one or more models for use by the recognition service to process images and videos using the training data. The trained model may be tested and validated using the testing data.

Patent Agency Ranking