Abstract:
A block-based storage system may implement reducing durability state for a data volume. A determination may be made that storage node replicating write requests for a data volume is unavailable. In response, subsequent write requests may be processed according to a reduced durability state for the data volume such that replication for the data volume may be disabled for the storage node. Write requests may then be completed at a fewer number of storage nodes prior to acknowledging the write request as complete. Durability state for the data volume may be increase in various embodiments. A storage node may be identified and replication operations may be performed to synchronize the current data volume at the storage node with a replica of the data volume maintained at the identified storage node.
Abstract:
A block-based storage system may implement reducing durability state for a data volume. A determination may be made that storage node replicating write requests for a data volume is unavailable. In response, subsequent write requests may be processed according to a reduced durability state for the data volume such that replication for the data volume may be disabled for the storage node. Write requests may then be completed at a fewer number of storage nodes prior to acknowledging the write request as complete. Durability state for the data volume may be increase in various embodiments. A storage node may be identified and replication operations may be performed to synchronize the current data volume at the storage node with a replica of the data volume maintained at the identified storage node.
Abstract:
Write optimization for block-based storage performing snapshot operations may be implemented. Write requests for a particular data volume may be received for which a snapshot operation is in progress. A determination may be made as to whether a data chunk of the data volume modified as part of the write request has not yet been stored to a remote snapshot data store as part of the snapshot operation. For a data chunk that is to be modified and that has not yet been stored, the data chunk may be stored in a local in-memory volume snapshot buffer. Once the data chunk is stored in the in-memory volume snapshot buffer, the write request may be performed and acknowledged as complete. The data chunk may be sent to the remote snapshot data store asynchronously with regard to the acknowledgment of the write request.