Abstract:
A system that implements a scalable data storage service may maintain tables in a non-relational data store on behalf of clients. The system may provide a Web services interface through which service requests are received, and an API usable to request that a table be created, deleted, or described; that an item be stored, retrieved, deleted, or its attributes modified; or that a table be queried (or scanned) with filtered items and/or their attributes returned. An asynchronous workflow may be invoked to create or delete a table. Items stored in tables may be partitioned and indexed using a simple or composite primary key. The system may not impose pre-defined limits on table size, and may employ a flexible schema. The service may provide a best-effort or committed throughput model. The system may automatically scale and/or re-partition tables in response to detecting workload changes, node failures, or other conditions or anomalies.
Abstract:
A computing system includes a chassis, one or more backplanes coupled to the chassis. Computing devices are coupled to the one or more backplanes. The one or more backplanes include backplane openings that allow air to pass from one side of the backplane to the other side of the backplane. Air channels are formed by adjacent circuit board assemblies of the computing devices and the one or more backplanes. Channel capping elements at least partially close the air channels.
Abstract:
A computing system includes a chassis, one or more backplanes coupled to the chassis. Computing devices are coupled to the one or more backplanes. The one or more backplanes include backplane openings that allow air to pass from one side of the backplane to the other side of the backplane. Air channels are formed by adjacent circuit board assemblies of the computing devices and the one or more backplanes. Channel capping elements at least partially close the air channels.
Abstract:
Methods and apparatus for equitable distribution of excess shared-resource throughput capacity are disclosed. A first and a second work target are configured to access a shared resource to implement accepted work requests. Admission control is managed at the work targets using respective token buckets. A first metric indicative of the work request arrival rates at the work targets during a time interval, and a second metric associated with the provisioned capacities of the work targets are determined. A number of tokens determined based on a throughput limit of the shared resource is distributed among the work targets to be used for admission control during a subsequent time interval. The number of tokens distributed to each work target is based on the first metric and/or the second metric.
Abstract:
A system that implements a scalable data storage service may maintain tables in a non-relational data store on behalf of clients. The system may provide a Web services interface through which service requests are received, and an API usable to request that a table be created, deleted, or described; that an item be stored, retrieved, deleted, or its attributes modified; or that a table be queried (or scanned) with filtered items and/or their attributes returned. An asynchronous workflow may be invoked to create or delete a table. Items stored in tables may be partitioned and indexed using a simple or composite primary key. The system may not impose pre-defined limits on table size, and may employ a flexible schema. The service may provide a best-effort or committed throughput model. The system may automatically scale and/or re-partition tables in response to detecting workload changes, node failures, or other conditions or anomalies.
Abstract:
Methods and apparatus for token-sharing mechanisms for burst-mode operations are disclosed. A first and a second token bucket are respectively configured for admission control at a first and a second work target. A number of tokens to be transferred between the first bucket and the second bucket, as well as the direction of the transfer, are determined, for example based on messages exchanged between the work targets. The token transfer is initiated, and admission control decisions at the work targets are made based on the token population resulting from the transfer.
Abstract:
Methods and apparatus for burst-mode admission control using token buckets are disclosed. A work request (such as a read or a write) directed to a work target is received. Based on a first criterion, a determination is made that the work target is in a burst mode of operation. A token population of a burst-mode token bucket is determined, and if the population meets a second criterion, the work request is accepted for execution.
Abstract:
A system for performing computing operations in a data center includes one or more sets of computer systems, one or more primary power systems, and a reserve power system. The primary power systems include at least one power distribution unit that supplies power to at least one of the sets of computer systems. The reserve power system automatically supplies power to at least one of the sets of computer systems if a condition is met (such as a failure of the primary power system).
Abstract:
A system that implements a scalable data storage service may maintain tables in a non-relational data store on behalf of clients. The system may provide a Web services interface through which service requests are received, and an API usable to request that a table be created, deleted, or described; that an item be stored, retrieved, deleted, or its attributes modified; or that a table be queried (or scanned) with filtered items and/or their attributes returned. An asynchronous workflow may be invoked to create or delete a table. Items stored in tables may be partitioned and indexed using a simple or composite primary key. The system may not impose pre-defined limits on table size, and may employ a flexible schema. The service may provide a best-effort or committed throughput model. The system may automatically scale and/or re-partition tables in response to detecting workload changes, node failures, or other conditions or anomalies.
Abstract:
Methods and apparatus for compound token buckets usable for burst-mode admission control are disclosed. A peak burst rate and a sustained burst rate of work requests that are to be supported at a work target are determined. The maximum token populations of a peak-burst token bucket and a sustained-burst token bucket are configured, based on the peak burst rate and the sustained burst rate respectively. In response to receiving a work request directed at the work target, a determination to accept the work request for execution is made based at least in part on the token population of the peak-burst token bucket and/or the sustained-burst token bucket.