摘要:
Digital signal processing (“DSP”) circuit blocks are provided that can more easily work together to perform larger (e.g., more complex and/or more arithmetically precise) DSP operations if desired. These DSP blocks may also include redundancy circuitry that facilitates stitching together multiple such blocks despite an inability to use some block (e.g., because of a circuit defect). Systolic registers may be included at various points in the DSP blocks to facilitate use of the blocks to implement systolic form, finite-impulse-response (“FIR”), digital filters.
摘要:
Digital signal processing (“DSP”) circuit blocks are provided that can more easily work together to perform larger (e.g., more complex and/or more arithmetically precise) DSP operations if desired. These DSP blocks may also include redundancy circuitry that facilitates stitching together multiple such blocks despite an inability to use some block (e.g., because of a circuit defect). Systolic registers may be included at various points in the DSP blocks to facilitate use of the blocks to implement systolic form, finite-impulse-response (“FIR”), digital filters.
摘要:
Configurable specialized processing blocks, such as DSP blocks, are described that implement fixed and floating-point functionality in a single mixed architecture on a programmable device. The described architecture reduces the need to construct floating-point functions outside the configurable specialized processing block, thereby minimizing hardware cost and area. The disclosed architecture also introduces pipelining into the DSP block in order to ensure the floating-point multiplication and addition functions remain in synchronicity, thereby increasing the maximum frequency at which the DSP block can operate. Moreover, the disclosed architecture includes logic circuitry to support floating-point exception handling.
摘要:
Configurable specialized processing blocks, such as DSP blocks, are described that implement fixed and floating-point functionality in a single mixed architecture on a programmable device. The described architecture reduces the need to construct floating-point functions outside the configurable specialized processing block, thereby minimizing hardware cost and area. The disclosed architecture also introduces pipelining into the DSP block in order to ensure the floating-point multiplication and addition functions remain in synchronicity, thereby increasing the maximum frequency at which the DSP block can operate. Moreover, the disclosed architecture includes logic circuitry to support floating-point exception handling.
摘要:
Configurable specialized processing blocks, such as DSP blocks, are described that implement fixed and floating-point functionality in a single mixed architecture on a programmable device. The described architecture reduces the need to construct floating-point functions outside the configurable specialized processing block, thereby minimizing hardware cost and area. The disclosed architecture also introduces pipelining into the DSP block in order to ensure the floating-point multiplication and addition functions remain in synchronicity, thereby increasing the maximum frequency at which the DSP block can operate. Moreover, the disclosed architecture includes logic circuitry to support floating-point exception handling.
摘要:
Configurable specialized processing blocks, such as DSP blocks, are described that implement fixed and floating-point functionality in a single mixed architecture on a programmable device. The described architecture reduces the need to construct floating-point functions outside the configurable specialized processing block, thereby minimizing hardware cost and area. The disclosed architecture also introduces pipelining into the DSP block in order to ensure the floating-point multiplication and addition functions remain in synchronicity, thereby increasing the maximum frequency at which the DSP block can operate. Moreover, the disclosed architecture includes logic circuitry to support floating-point exception handling.
摘要:
Configurable specialized processing blocks, such as DSP blocks, are described that implement fixed and floating-point functionality in a single mixed architecture on a programmable device. The described architecture reduces the need to construct floating-point functions outside the configurable specialized processing block, thereby minimizing hardware cost and area. The disclosed architecture also introduces pipelining into the DSP block in order to ensure the floating-point multiplication and addition functions remain in synchronicity, thereby increasing the maximum frequency at which the DSP block can operate. Moreover, the disclosed architecture includes logic circuitry to support floating-point exception handling.
摘要:
Digital signal processing (“DSP”) circuit blocks are provided that can more easily work together to perform larger (e.g., more complex and/or more arithmetically precise) DSP operations if desired. These DSP blocks may also include redundancy circuitry that facilitates stitching together multiple such blocks despite an inability to use some block (e.g., because of a circuit defect). Systolic registers may be included at various points in the DSP blocks to facilitate use of the blocks to implement systolic form, finite-impulse-response (“FIR”), digital filters.
摘要:
Digital signal processing (“DSP”) circuit blocks are provided that can more easily work together to perform larger (e.g., more complex and/or more arithmetically precise) DSP operations if desired. These DSP blocks may also include redundancy circuitry that facilitates stitching together multiple such blocks despite an inability to use some block (e.g., because of a circuit defect). Systolic registers may be included at various points in the DSP blocks to facilitate use of the blocks to implement systolic form, finite-impulse-response (“FIR”), digital filters.