Abstract:
A construction machine includes: a work arm rotatably mounted at a construction machine main body; a work tool mounted at the work arm; an attitude decision device that decides an attitude of the work arm or the work tool relative to the construction machine main body; a follow-up enabling device that allows the work armor the work tool to follow a displacement of a contacting object that comes into contact with the work tool and applies an external force to the work tool, by adjusting the attitude of the work arm or the work tool decided by the attitude decision device; and a switching device that selects whether or not to allow the work arm or the work tool to follow the displacement of the contacting object via the follow-up enabling device.
Abstract:
A construction machine includes: a work arm rotatably mounted at a construction machine main body; a work tool mounted at the work arm; an attitude decision device that decides an attitude of the work arm or the work tool relative to the construction machine main body; a follow-up enabling device that allows the work armor the work tool to follow a displacement of a contacting object that comes into contact with the work tool and applies an external force to the work tool, by adjusting the attitude of the work arm or the work tool decided by the attitude decision device; and a switching device that selects whether or not to allow the work arm or the work tool to follow the displacement of the contacting object via the follow-up enabling device.
Abstract:
A double-arm working machine has an upper swing structure, an operator cabin, left swing post and right swing post provided in front of the upper swing structure, and a left work front A and right work front B provided on the left swing post and the right swing post, respectively, such that the work fronts A, B each sway vertically. An interference prevention controller generates an output signal to swing the swing posts 7a, 7b pursuant to a differential angle between the left and right work fronts A, B and to a command signal from an operating device. A differential angle range in which the left and right work fronts A, B are likely to come into contact with each other is defined as an interference danger area (N), and an assigned differential-angle range contiguous to the interference danger area is defined as a semi-interference danger area.
Abstract:
A construction machine includes: a work arm rotatably mounted at a construction machine main body; a work tool mounted at the work arm; an attitude decision device that decides an attitude of the work arm or the work tool relative to the construction machine main body; a follow-up enabling device that allows the work arm or the work tool to follow a displacement of a contacting object that comes into contact with the work tool and applies an external force to the work tool, by adjusting the attitude of the work arm or the work tool decided by the attitude decision device; and a switching device that selects whether or not to allow the work arm or the work tool to follow the displacement of the contacting object via the follow-up enabling device.
Abstract:
A double-arm working machine has an upper swing structure, an operator cabin, left swing post and right swing post provided in front of the upper swing structure, and a left work front A and right work front B provided on the left swing post and the right swing post, respectively, such that the work fronts A, B each sway vertically. An interference prevention controller generates an output signal to swing the swing posts 7a, 7b pursuant to a differential angle between the left and right work fronts A, B and to a command signal from an operating device. A differential angle range in which the left and right work fronts A, B are likely to come into contact with each other is defined as an interference danger area (N), and an assigned differential-angle range contiguous to the interference danger area is defined as a semi-interference danger area.
Abstract:
Construction machine capable of incorporating an engine and using an external power source. The construction machine includes an electrical storage device performing a charge with the external power source, uses the electrical storage device to provide assist when the power of the engine is insufficient, uses an electrical charge in the electrical storage device systematically in accordance with work time, and efficiently uses the electrical storage device by controlling its discharge amount in accordance with load status. The construction machine includes the engine, accessory loads connected to the engine, an assist electric motor driven by the engine, electrical power converters for converting an AC current, which is the output current of the assist electric motor, to a DC current, and the electrical storage device connected to the DC side of each electrical power converter. The electrical storage device becomes charged through a charging device from the external power source.
Abstract:
A display unit for a construction machine is provided which allow for an operator to easily set a target plane or area in works to be performed under automatic control, and to freely change the contents to be displayed regardless of whether the machine is under the automatic control, so that information which the operator wants to see can be promptly displayed.
Abstract:
An area limiting excavation control system in an excavation machine having a front device, includes means for setting in advance, an area where the front device is movable. A control unit calculates the position and posture of the front device based on signals from angle sensors. When the front device is inside the set area near the boundary thereof, the control unit calculates a limit value (a) of a bucket tip speed so that a moving speed of the front device in the direction vertical to the boundary of the set area is restricted, and then modifies the limit value (a) depending on a load pressure of an arm cylinder detected by a pressure sensor. It further calculates, from the limit value (a), a limit value of the component of a boom-dependent bucket tip speed vertical to the boundary of the set area, and then modifies a boom operation signal so that the boom-dependent bucket tip speed will not exceed the above limit value. Ground can be excavated to the boundary of the set area without being affected by hardness of the ground to be excavated, while using a simple program.
Abstract:
A slope excavation control system for a hydraulic excavator and a slope excavation method using a hydraulic excavator include an external reference 80 which extends horizontally in the direction of advance of a target slope face. A vertical distance hry and a horizontal distance hrx from the external reference to a reference point on a target slope face, and an angle of the target slope face are set by using a setting device. When a front reference provided at a bucket end is aligned with the external reference and an external reference setting switch is depressed, a control unit calculates a vertical distance hfy and a horizontal distance hfx from a body center of the excavator to the external reference, then calculates a vertical distance hsy and a horizontal distance hsx from the body center to the reference point of the target slope face by using the distances hsy and hsx as modification values. The control unit then sets the target slope face on the basis of a body of the excavator from the distances hsy and hsx and the angle input by the setting device, thereby carrying out area limiting excavation control.
Abstract:
The present invention relates to an acoustic microscope system having an ultrasonic probe that is driven with a high-frequency burst signal to radiate an ultrasonic signal and that detects the resulting reflected and irradiated waves, a Z-axis moving device that updates the vertical distance Z between the probe and a material of interest for each sampling position, and device for constructing a V(z) curve from the reflection signals obtained at respective sampling positions. The ultrasonic probe of the invention is provided with an acoustic lens, a first ultrasonic transducer for receiving a leaky surface skimming compressional wave reflected from a sample material on one side of the acoustic lens, and a second ultrasonic transducer also provided on the side of the acoustic lens for receiving a leaky surface acoustic wave.