摘要:
A QoS controller, in an IP network having one or more routers, is disclosed. The controller includes a storing unit configured to assign a first bit area and a second bit area within a field in an IP header of an IP packet. The storing unit stores first bits for controlling the routers into the first bit area and second bits for routing at the routers into the second bit area. A reporting unit is configured to report to the routers the first bits and the second bits stored by the storing unit.
摘要:
An object of the present invention is to avoid packet loss and implement a seamless handover by minimizing the handover latency when a handover is implemented by a multihomed moving network (MN) or a mobile host (MH). The present invention is a mobile communication system that is constituted comprising an MN, a plurality of AI each constituting an interface for the connection to a core network at the MN, and a control device (MMF), wherein the MMF dynamically changes the AI adopted as the connection interface when a predetermined condition is satisfied on the basis of the connection status to the core network at each AI or the prediction information for a subsequent handover. In so doing, the control device continues the transmission and receipt of data with respect to an appropriate AI capable of maintaining a predetermined communication quality, and maintains the connection to the core network of another AI while causing this AI to enter a closed state in which the transmission and receipt of data is disabled.
摘要:
An object of the present invention is to avoid packet loss and implement a seamless handover by minimizing the handover latency when a handover is implemented by a multihomed moving network (MN) or a mobile host (MH). The present invention is a mobile communication system that is constituted comprising an MN, a plurality of AI each constituting an interface for the connection to a core network at the MN, and a control device (MMF), wherein the MMF dynamically changes the AI adopted as the connection interface when a predetermined condition is satisfied on the basis of the connection status to the core network at each AI or the prediction information for a subsequent handover. In so doing, the control device continues the transmission and receipt of data with respect to an appropriate AI capable of maintaining a predetermined communication quality, and maintains the connection to the core network of another AI while causing this AI to enter a closed state in which the transmission and receipt of data is disabled.
摘要:
When it is determined in a simplex method whether or not the existing path realized by routers R1 to R7 configuring a network can support the requested traffic, the optimal traffic distribution can be obtained although a prepared path group has a bottleneck link and has no sufficient band in a prepared path, etc. When there is no optimal solution in the simplex method, a bottleneck link is found, a bypass is added, and the simplex method is further applied. Thus, it can be determined whether or not the requested traffic can be accommodated by the current path. When it cannot be accommodated, only a necessary path can be added, and the optimal traffic distribution can be performed by setting the objective function based on the network cost such as the consumption of network resources, a delay, the number of hops, etc.