Abstract:
A method and a system for block scheduling are disclosed. The method includes retrieving an original block ID, determining a corresponding new block ID from a mapping, executing a new block corresponding to the new block ID, and repeating the retrieving, determining, and executing for each original block ID. The system includes a program memory configured to store multi-block computer programs, an identifier memory configured to store block identifiers (ID's), management hardware configured to retrieve an original block ID from the program memory, scheduling hardware configured to receive the original block ID from the management hardware and determine a new block ID corresponding to the original block ID using a stored mapping, and processing hardware configured to receive the new block ID from the scheduling hardware and execute a new block corresponding to the new block ID.
Abstract:
A method, computer program product, and system is described that determines the correctness of using memory operations in a computing device with heterogeneous computer components. Embodiments include an optimizer based on the characteristics of a Sequential Consistency for Heterogeneous-Race-Free (SC for HRF) model that analyzes a program and determines the correctness of the ordering of events in the program. HRF models include combinations of the properties: scope order, scope inclusion, and scope transitivity. The optimizer can determine when a program is heterogeneous-race-free in accordance with an SC for HRF memory consistency model. For example, the optimizer can analyze a portion of program code, respect the properties of the SC for HRF model, and determine whether a value produced by a store memory event will be a candidate for a value observed by a load memory event. In addition, the optimizer can determine whether reordering of events is possible.
Abstract translation:描述了一种方法,计算机程序产品和系统,其确定在具有异构计算机组件的计算设备中使用存储器操作的正确性。 实施例包括基于用于异构无竞争(SC for HRF)的顺序一致性的特性的优化器,该模型分析程序并确定程序中的事件的顺序的正确性。 HRF模型包括属性的组合:范围顺序,范围包含和范围传递性。 优化器可以根据HR对HRF内存一致性模型的SC来确定程序何时是异构无竞争的。 例如,优化器可以分析程序代码的一部分,尊重SC的HRF模型的属性,并且确定由存储器存储器事件产生的值是否将是由加载存储器事件观察到的值的候选。 此外,优化器可以确定是否可能重新排序事件。
Abstract:
A processing system having a multilevel cache hierarchy employs techniques for repurposing dead cache blocks so as to use otherwise wasted space in a cache hierarchy employing a write-back scheme. For a cache line containing invalid data with a valid tag, the valid tag is maintained for cache coherence purposes or otherwise, resulting in a valid tag for a dead cache block. A cache controller repurposes the dead cache block by storing any of a variety of new data at the dead cache block, while storing the new tag in a tag entry of a dead block tag way with an identifier indicating the location of the new data.
Abstract:
Sharing tasks among compute units in a processor can increase the efficiency of the processor. When a compute unit does not have a task in its task memory to perform, donating tasks from other compute units can prevent the compute unit from being idle while there is task in other parts of the processor. It is desirable to share tasks among compute units that are within defined scopes of the processor. Compute units may share tasks by allowing other compute units to access their private memory, or by donating tasks to a shared memory.
Abstract:
A processing system having a multilevel cache hierarchy employs techniques for repurposing dead cache blocks so as to use otherwise wasted space in a cache hierarchy employing a write-back scheme. For a cache line containing invalid data with a valid tag, the valid tag is maintained for cache coherence purposes or otherwise, resulting in a valid tag for a dead cache block. A cache controller repurposes the dead cache block by storing any of a variety of new data at the dead cache block, while storing the new tag in a tag entry of a dead block tag way with an identifier indicating the location of the new data.
Abstract:
Sharing tasks among compute units in a processor can increase the efficiency of the processor. When a compute unit does not have a task in its task memory to perform, donating tasks from other compute units can prevent the compute unit from being idle while there is task in other parts of the processor. It is desirable to share tasks among compute units that are within defined scopes of the processor. Compute units may share tasks by allowing other compute units to access their private memory, or by donating tasks to a shared memory.
Abstract:
A method and a system for block scheduling are disclosed. The method includes retrieving an original block ID, determining a corresponding new block ID from a mapping, executing a new block corresponding to the new block ID, and repeating the retrieving, determining, and executing for each original block ID. The system includes a program memory configured to store multi-block computer programs, an identifier memory configured to store block identifiers (ID's), management hardware configured to retrieve an original block ID from the program memory, scheduling hardware configured to receive the original block ID from the management hardware and determine a new block ID corresponding to the original block ID using a stored mapping, and processing hardware configured to receive the new block ID from the scheduling hardware and execute a new block corresponding to the new block ID.