SYSTEMS AND METHODS FOR DOCUMENT GENERATION
    2.
    发明公开

    公开(公告)号:US20230418881A1

    公开(公告)日:2023-12-28

    申请号:US17809371

    申请日:2022-06-28

    Applicant: ADOBE INC.

    CPC classification number: G06F16/93 G06F40/103 G06F40/14 G06F40/166

    Abstract: Systems and methods for document generation are provided. One aspect of the systems and methods includes identifying, by a style extractor, a document fragment comprising a first style element of a first style category; computing, by a style generator, a reward function based on a correlation value between the first style element and a second style element of a second style category different from the first style category, wherein the correlation value is based on correlations between style elements in a plurality of historical document fragments; selecting, by the style generator, the second style element based on the reward function; and generating, by a document generator, a modified document fragment that includes the first style element of the first style category and the second style element of the second style category.

    SEGMENTING USERS WITH SPARSE DATA UTILIZING HASH PARTITIONS

    公开(公告)号:US20220253463A1

    公开(公告)日:2022-08-11

    申请号:US17660328

    申请日:2022-04-22

    Applicant: Adobe Inc.

    Abstract: The present disclosure describes systems, non-transitory computer-readable media, and methods for utilizing hash partitions to determine local densities and distances among users (or among other represented data points) for clustering sparse data into segments. For instance, the disclosed systems can generate hash signatures for users in a sparse dataset and can map users to hash partitions based on the hash signatures. The disclosed systems can further determine local densities and separation distances for particular users (or other represented data points) within the hash partitions. Upon determining local densities and separation distances for datapoints from the dataset, the disclosed systems can select a segment (or cluster of data points) grouped according to a hierarchy of a clustering algorithm, such as a density-peaks-clustering algorithm.

    Dynamic clustering of sparse data utilizing hash partitions

    公开(公告)号:US11328002B2

    公开(公告)日:2022-05-10

    申请号:US16852110

    申请日:2020-04-17

    Applicant: Adobe Inc.

    Abstract: The present disclosure describes systems, non-transitory computer-readable media, and methods for utilizing hash partitions to determine local densities and distances among users (or among other represented data points) for clustering sparse data into segments. For instance, the disclosed systems can generate hash signatures for users in a sparse dataset and can map users to hash partitions based on the hash signatures. The disclosed systems can further determine local densities and separation distances for particular users (or other represented data points) within the hash partitions. Upon determining local densities and separation distances for datapoints from the dataset, the disclosed systems can select a segment (or cluster of data points) grouped according to a hierarchy of a clustering algorithm, such as a density-peaks-clustering algorithm.

    Segmenting users with sparse data utilizing hash partitions

    公开(公告)号:US11630854B2

    公开(公告)日:2023-04-18

    申请号:US17660328

    申请日:2022-04-22

    Applicant: Adobe Inc.

    Abstract: The present disclosure describes systems, non-transitory computer-readable media, and methods for utilizing hash partitions to determine local densities and distances among users (or among other represented data points) for clustering sparse data into segments. For instance, the disclosed systems can generate hash signatures for users in a sparse dataset and can map users to hash partitions based on the hash signatures. The disclosed systems can further determine local densities and separation distances for particular users (or other represented data points) within the hash partitions. Upon determining local densities and separation distances for datapoints from the dataset, the disclosed systems can select a segment (or cluster of data points) grouped according to a hierarchy of a clustering algorithm, such as a density-peaks-clustering algorithm.

    DYNAMIC CLUSTERING OF SPARSE DATA UTILIZING HASH PARTITIONS

    公开(公告)号:US20210326361A1

    公开(公告)日:2021-10-21

    申请号:US16852110

    申请日:2020-04-17

    Applicant: Adobe Inc.

    Abstract: The present disclosure describes systems, non-transitory computer-readable media, and methods for utilizing hash partitions to determine local densities and distances among users (or among other represented data points) for clustering sparse data into segments. For instance, the disclosed systems can generate hash signatures for users in a sparse dataset and can map users to hash partitions based on the hash signatures. The disclosed systems can further determine local densities and separation distances for particular users (or other represented data points) within the hash partitions. Upon determining local densities and separation distances for datapoints from the dataset, the disclosed systems can select a segment (or cluster of data points) grouped according to a hierarchy of a clustering algorithm, such as a density-peaks-clustering algorithm.

Patent Agency Ranking