Multi-channel light-receiving module

    公开(公告)号:US11754787B2

    公开(公告)日:2023-09-12

    申请号:US17639084

    申请日:2021-03-26

    IPC分类号: G02B6/293 G02B6/42

    摘要: Provided is a multi-channel light-receiving module, which comprises an incident collimator, a light-splitting assembly, an optical path conversion assembly and a photoelectric chip array which are arranged in sequence, wherein the light-splitting assembly comprises an inner reflector and a plurality of optical filters, and the optical filters are respectively arranged on an output end of the inner reflector; the channel interval of photoelectric chips in the photoelectric chip array is less than the channel interval of an adjacent optical filter; the optical path conversion assembly comprises a plurality of emergent collimators and an optical fiber connected to each of the emergent collimators; a plurality of paths of optical signals output by the light-splitting assembly are respectively coupled into corresponding optical fibers after passing through the plurality of emergent collimators; and the plurality of paths of optical signals are output by output ends of the plurality of optical fibers and are then coupled to the photoelectric chip array. By means of the light-receiving module, an optical path component is converted into a small channel interval of photoelectric chips from a large channel interval of optical filters, the problem of it being difficult to match the channel interval of optical filters and the channel interval of photoelectric chips is solved, the cost of photoelectric chips is reduced, and the assembly difficulty of optical filters is also reduced.

    Multi-Channel Light-Receiving Module

    公开(公告)号:US20220299708A1

    公开(公告)日:2022-09-22

    申请号:US17639084

    申请日:2021-03-26

    IPC分类号: G02B6/293 G02B6/42

    摘要: Provided is a multi-channel light-receiving module, which comprises an incident collimator, a light-splitting assembly, an optical path conversion assembly and a photoelectric chip array which are arranged in sequence, wherein the light-splitting assembly comprises an inner reflector and a plurality of optical filters, and the optical filters are respectively arranged on an output end of the inner reflector; the channel interval of photoelectric chips in the photoelectric chip array is less than the channel interval of an adjacent optical filter; the optical path conversion assembly comprises a plurality of emergent collimators and an optical fiber connected to each of the emergent collimators; a plurality of paths of optical signals output by the light-splitting assembly are respectively coupled into corresponding optical fibers after passing through the plurality of emergent collimators; and the plurality of paths of optical signals are output by output ends of the plurality of optical fibers and are then coupled to the photoelectric chip array. By means of the light-receiving module, an optical path component is converted into a small channel interval of photoelectric chips from a large channel interval of optical filters, the problem of it being difficult to match the channel interval of optical filters and the channel interval of photoelectric chips is solved, the cost of photoelectric chips is reduced, and the assembly difficulty of optical filters is also reduced.