Abstract:
A method of manufacturing a lithium ion conductive glass ceramic, includes a step of forming granules using a material including an SiO2 source, a ZrO2 source, a P2O5 source and an Na2O source; a step of obtaining a powder including a glass ceramic by passing the granules under a heated gas phase atmosphere to melt the granules and solidifying the melted granules; a step of obtaining a target object including a glass ceramic by performing a heat treatment on the powder to precipitate crystals; and a step of obtaining a lithium ion conductive glass ceramic by performing an ion-exchange process on the target object in molten salt including lithium ions.
Abstract:
The present invention relates to an alkali-free glass having a strain point of 710° C. or higher, an average thermal expansion coefficient at from 50 to 350° C. of from 30×10−7 to 43×10−7/° C., a temperature T2 at which glass viscosity reaches 102 dPa·s of 1,710° C. or lower, and a temperature T4 at which the glass viscosity reaches 104 dPa·s of 1,320° C. or lower, containing, indicated by % by mass on the basis of oxides: SiO2 58.5 to 67.5, Al2O3 18 to 24, B2O3 0 to 1.7, MgO 6.0 to 8.5, CaO 3.0 to 8.5, SrO 0.5 to 7.5, BaO 0 to 2.5, and ZrO2 0 to 4.0, containing 0 to 0.35% by mass of Cl, 0.01 to 0.15% by mass of F, and 0.01 to 0.3% by mass of SnO2, and having a β-OH value of the glass of from 0.15 to 0.60 mm−1.
Abstract:
A method of manufacturing a lithium ion conductive solid electrolyte includes (a) a step of preparing an object to be processed including a crystalline material, that includes alkali metal other than lithium and whose ionic conductivity at room temperature is greater than or equal to 1×10−13 S/cm; and (b) a step of performing an ion-exchange process on the object to be processed in molten salt including lithium ions.
Abstract:
The present invention relates to a non-alkali glass having a strain point of from 710° C. to lower than 725° C., an average thermal expansion coefficient at from 50 to 300° C. of from 30×10−7 to 43×10−7/° C., a temperature T2 at which glass viscosity reaches 102 dPa·s of 1710° C. or lower, a temperature T4 at which the glass viscosity reaches 104 dPd·s of 1320° C. or lower, and containing, indicated by mol % on the basis of oxides, SiO2 66 to 70, Al2O3 12 to 14, B2O3 exceeding 0 to 1.5, MgO exceeding 9.5 to 13 (or 5 to 9.5), CaO 4 to 9 (or 4 to 11), SrO 0.5 to 4.5, BaO 0 to 0.5 and ZrO 0 to 2.
Abstract translation:本发明涉及应变点为710℃以上且低于725℃的无碱玻璃,50〜300℃的平均热膨胀系数为30×10 -7〜43 ×10-7 /℃,玻璃粘度达到102dPa·s的温度T2为1710℃以下,玻璃粘度达到104dPd·s的温度T4为1320℃以下, 以氧化物为基准的摩尔%表示,SiO 2 66〜70,Al 2 O 3 12〜14,B 2 O 3超过0〜1.5,MgO超过9.5〜13(或5〜9.5),CaO 4〜9(或4〜11) ),SrO 0.5〜4.5,BaO 0〜0.5,ZrO 0〜2。
Abstract:
The present invention relates to an alkali-free glass having a strain point of 735° C. or higher, an average thermal expansion coefficient at from 50 to 350° C. of from 30×10−7 to 40×10−7/° C., a temperature T2 at which a glass viscosity is 102 dPa·s of 1,710° C. or lower, a temperature T4 at which a glass viscosity is 104 dPa·s of 1,340° C. or lower, and a devitrification temperature of 1,330° C. or lower, the alkali-free glass including, in terms of mol % on the basis of oxides: SiO2 66 to 69, Al2O3 12 to 15, B2O3 0 to 1.5, MgO 6 to 9.5, CaO 7 to 9, SrO 0.5 to 3, BaO 0 to 1, and ZrO2 0 to 2, in which MgO+CaO+SrO+BaO is from 16 to 18.2, MgO/(MgO+CaO+SrO+BaO) is 0.35 or more, MgO/(MgO+CaO) is 0.40 or more and less than 0.52, and MgO/(MgO+SrO) is 0.45 or more.
Abstract:
The present invention relates to a non-alkali glass having a strain point of 710° C. or higher, an average thermal expansion coefficient at from 50 to 300° C. of from 30×10−7 to 43×10−7/° C., a temperature T2 at which glass viscosity reaches 102 dPa·s of 1,710° C. or lower, a temperature T4 at which the glass viscosity reaches 104 dPa·s of 1,320° C. or lower, containing, indicated by percentage by mass on the basis of oxides, SiO2 58.5 to 67.5, Al2O3 18 to 24, B2O3 0 to 1.7, MgO 6.0 to 8.5, CaO 3.0 to 8.5, SrO 0.5 to 7.5, BaO 0 to 2.5 and ZrO2 0 to 4.0, containing Cl in an amount of from 0.15 to 0.35% by mass, F in an amount of from 0.01 to 0.15% by mass and SO3 in an amount of from 1 to 25 ppm and having a β-OH value of the glass of from 0.15 to 0.45 mm−1, in which (MgO/40.3)+(CaO/56.1)+(SrO/103.6)+(BaO/153.3) is from 0.27 to 0.35, (MgO/40.3)/((MgO/40.3)+(CaO/56.1)+(SrO/103.6)+(BaO/153.3)) is 0.40 or more, (MgO/40.3)/((MgO/40.3)+(CaO/56.1)) is 0.40 or more, and (MgO/40.3)/((MgO/40.3)+(SrO/103.6)) is 0.60 or more.
Abstract:
The present invention relates to a production method for a non-alkali glass, containing putting glass raw materials in a melting furnace, heating to a temperature of 1,350 to 1,750° C. to prepare a molten glass, and forming the molten glass into a sheet shape by float method, in which the heating in the melting furnace concurrently utilizes heating by combustion flame of burners and electrical heating of the molten glass by heating electrodes arranged so as to be dipped in the molten glass in the melting furnace, and in which when electrical resistivity at 1,350° C. of the molten glass is represented by Rg (Ωcm) and electrical resistivity at 1,350° C. of a refractory constituting the melting furnace is represented by Rb (Ωcm), the glass raw materials and the refractory are selected so as to achieve Rb>Rg.
Abstract:
A method for manufacturing an alkali-free glass includes heating the glass raw material at a temperature of 1,400 to 1,800° C. in a melting furnace to thereby prepare a molten glass, and forming the molten glass into a sheet shape, wherein heating by combustion flame of a burner and electrical heating of the molten glass by a heating electrode arranged so as to be dipped in the molten glass in the melting furnace are used in combination in the heating in the melting furnace, and when an electrical resistivity of the molten glass at 1,400° C. is Rg (Ωcm) and an electrical resistivity of a refractory constituting the melting furnace at 1,400° C. is Rb (Ωcm), the glass raw material and the refractory are selected so as to satisfy Rb>Rg.
Abstract:
The present invention relates to an alkali-free glass having a strain point of 725° C. or higher, an average thermal expansion coefficient at from 50 to 300° C. of from 30×10−7 to 40×107/° C., a temperature T2 at which a glass viscosity is 102 dPa·s of 1,710° C. or lower, and a temperature T4 at which a glass viscosity is 104 dPa·s of 1,320° C. or lower, the alkali-free glass including, in terms of mol % on the basis of oxides, SiO2: 66 to 70, Al2O3: 12 to 15, B2O3: 0 to 1.5, MgO: more than 9.5 and 13 or less, CaO: 4 to 9, SrO: 0.5 to 4.5, BaO: 0 to 1, and ZrO2: 0 to 2, in which MgO+CaO+SrO+BaO is from 17 to 21, MgO/(MgO+CaO+SrO+BaO) is 0.4 or more, MgO/(MgO+CaO) is 0.4 or more, MgO/(MgO+SrO) is 0.6 or more, and the alkali-free glass does not substantially contain an alkali metal oxide.
Abstract:
The present invention relates to a non-alkali glass having a strain point of from 710° C. to lower than 725° C., an average thermal expansion coefficient at from 50 to 300° C. of from 30×10−7 to 43×10−7/° C., a temperature T2 at which glass viscosity reaches 102 dPa·s of 1710° C. or lower, a temperature T4 at which the glass viscosity reaches 104 dPa·s of 1320° C. or lower, and containing, indicated by mol % on the basis of oxides, SiO2 66 to 70, Al2O3 12 to 14, B2O3 exceeding 0 to 1.5, MgO exceeding 9.5 to 13 (or 5 to 9.5), CaO 4 to 9 (or 4 to 11), SrO 0.5 to 4.5, BaO 0 to 0.5 and ZrO 0 to 2.
Abstract translation:本发明涉及应变点为710℃以上且低于725℃的无碱玻璃,50〜300℃的平均热膨胀系数为30×10 -7〜43 ×10-7 /℃,玻璃粘度达到102dPa·s的温度T2为1710℃以下,玻璃粘度达到104dPa·s的温度T4为1320℃以下, 以氧化物为基准的摩尔%表示,SiO 2 66〜70,Al 2 O 3 12〜14,B 2 O 3超过0〜1.5,MgO超过9.5〜13(或5〜9.5),CaO 4〜9(或4〜11) ),SrO 0.5〜4.5,BaO 0〜0.5,ZrO 0〜2。