Abstract:
Connector receptacles having protective structures for connector contacts. One example may provide a connector receptacle having one or more contacts that are reinforced with a protective piece around a portion of the contact. Another example may provide a connector receptacle having two or more contacts reinforced with adjacent protective pieces to provide additional protective reinforcement. Another example may provide a connector receptacle having two or more contacts reinforced with interlocking protective pieces. These protective pieces may protect contacts in a connector receptacle from damage when a device, module, or connector insert is inserted into the connector receptacle at an oblique angle, when a device, module, or insert is stressed while in the receptacle, or when a device, module, or insert is removed from the receptacle at an oblique angle.
Abstract:
Connector receptacles may be provided, where a multiple of such connector receptacles may be readily aligned to openings in a device enclosure, particularly where the openings are located on a curved or otherwise non-planar surface of the device enclosure. One example may provide a connector assembly that includes a plurality of connector receptacles. The connector receptacles in a connector assembly may be accurately aligned or registered to each other, and the connector assembly may be accurately aligned to a device enclosure. In this way, several connector receptacles may be accurately aligned to openings in the device enclosure. In another example, two or more connector receptacles may have faces that are at an oblique angle relative to each other.
Abstract:
Ground springs for connector receptacles. The ground springs may protect circuitry in an electronic device from stray voltages when a connector insert is inserted into a connector receptacle housed in the electronic device. One example may have a contacting portion located such that when a connector insert is mated with the connector receptacle, the contacting portion of the ground spring electrically connects to a shield of the connector insert before a ground contact of the connector insert electrically connects to a signal contact on a tongue of the connector receptacle.
Abstract:
Connector receptacles having protective structures for connector contacts. One example may provide a connector receptacle having one or more contacts that are reinforced with a protective piece around a portion of the contact. Another example may provide a connector receptacle having two or more contacts reinforced with adjacent protective pieces to provide additional protective reinforcement. Another example may provide a connector receptacle having two or more contacts reinforced with interlocking protective pieces. These protective pieces may protect contacts in a connector receptacle from damage when a device, module, or connector insert is inserted into the connector receptacle at an oblique angle, when a device, module, or insert is stressed while in the receptacle, or when a device, module, or insert is removed from the receptacle at an oblique angle.
Abstract:
Connector receptacles that can provide audible feedback to inform a user that a card has been properly inserted, and can include structures to protect contacts in a connector receptacle from damage due to an improper card insertion. An example can provide a connector receptacle having a click module to provide audible feedback indicating that a card has been fully inserted. Another example can provide a connector receptacle having movable contacts that can remain out of an insertion path until the card is at least partially inserted.
Abstract:
Connector tongues that may provide a high signal quality or signal integrity to allow high speed data transfers, may be reliably manufactured, and may be durable and have good wear performance. One example may provide a connector tongue having contacts and traces formed on a printed circuit board. Using a printed circuit board for pathways through a connector tongue may provide low impedances for power traces, matched impedances for differential signal pairs, and shielding. This may provide a connector tongue that may provide a high signal quality or signal integrity to allow high speed data transfers. These and other examples may provide a connector tongue that is durable and has good wear performance by including side retention features on each side of the printed circuit board. The side retention features may be metallic, ceramic, or other durable material.
Abstract:
Connector receptacles that can provide audible feedback to inform a user that a card has been properly inserted, and can include structures to protect contacts in a connector receptacle from damage due to an improper card insertion. An example can provide a connector receptacle having a click module to provide audible feedback indicating that a card has been fully inserted. Another example can provide a connector receptacle having movable contacts that can remain out of an insertion path until the card is at least partially inserted.
Abstract:
Connector tongues that may provide a high signal quality or signal integrity to allow high speed data transfers, may be reliably manufactured, and may be durable and have good wear performance. One example may provide a connector tongue having contacts and traces formed on a printed circuit board. Using a printed circuit board for pathways through a connector tongue may provide low impedances for power traces, matched impedances for differential signal pairs, and shielding. This may provide a connector tongue that may provide a high signal quality or signal integrity to allow high speed data transfers. These and other examples may provide a connector tongue that is durable and has good wear performance by including side retention features on each side of the printed circuit board. The side retention features may be metallic, ceramic, or other durable material.
Abstract:
Connector receptacles may be provided, where a multiple of such connector receptacles may be readily aligned to openings in a device enclosure, particularly where the openings are located on a curved or otherwise non-planar surface of the device enclosure. One example may provide a connector assembly that includes a plurality of connector receptacles. The connector receptacles in a connector assembly may be accurately aligned or registered to each other, and the connector assembly may be accurately aligned to a device enclosure. In this way, several connector receptacles may be accurately aligned to openings in the device enclosure. In another example, two or more connector receptacles may have faces that are at an oblique angle relative to each other.