Abstract:
Various methods are disclosed for additively manufacturing a feedstock material to create an AM preform, wherein the AM preform is configured with a body having an internal passage defined therein, wherein the internal passage further includes at least one of a void and a channel; inserting a filler material into the internal passage of the AM preform; closing the AM preform with an enclosure component such that the filler material is retained within the internal passage of the AM preform; and deforming the AM preform to a sufficient amount to create a product having an internal passage therein, wherein the product is configured with wrought properties for that material via the deforming step.
Abstract:
Various methods are disclosed for additively manufacturing a feedstock material to create an AM preform, wherein the AM preform is configured with a body having an internal passage defined therein, wherein the internal passage further includes at least one of a void and a channel; inserting a filler material into the internal passage of the AM preform; closing the AM preform with an enclosure component such that the filler material is retained within the internal passage of the AM preform; and deforming the AM preform to a sufficient amount to create a product having an internal passage therein, wherein the product is configured with wrought properties for that material via the deforming step.
Abstract:
A tie down assembly adapted to be installed within a structure includes a cup and a crossbar that is fastened removably to the cup by a plurality of fasteners. The cup includes a recess forming an interior surface, and a plurality of seats extending from the interior surface. The crossbar includes a central portion and a plurality of elongated members extending therefrom. Each of the members includes a head that engages a corresponding one of the seats of the cup and is secured to the seat by one of the fasteners. The central portion of the crossbar may include a central aperture that receives one of the fasteners for an additional attachment point to the cup. The crossbar is adapted to receive tie down hooks, connectors, and the like. When the crossbar requires repair or replacement, it may be removed from the cup by unfastening the fasteners without the need to remove the cup from the structure.
Abstract:
Methods for creating three-dimensional volume quality models of additively manufactured metal bodies are disclosed. In one embodiment, a method comprises additively manufacturing each metal layer of a metal body. One or more images of the first metal layer are obtained. The image(s) are processed to detect and map potential manufacturing defects in the first metal layer. A two-dimensional contour of the first metal layer is generated from the three-dimensional CAD model. The mapped defects are integrated into the two-dimensional contour. A first layer of a three-dimensional volume quality model of the metal body is created based on the integrated two-dimensional contour.
Abstract:
Methods for creating three-dimensional volume quality models of additively manufactured metal bodies are disclosed. In one embodiment, a method comprises additively manufacturing each metal layer of a metal body. One or more images of the first metal layer are obtained. The image(s) are processed to detect and map potential manufacturing defects in the first metal layer. A two-dimensional contour of the first metal layer is generated from the three-dimensional CAD model. The mapped defects are integrated into the two-dimensional contour. A first layer of a three-dimensional volume quality model of the metal body is created based on the integrated two-dimensional contour.
Abstract:
A tie down assembly adapted to be installed within a structure includes a cup and a crossbar that is fastened removably to the cup by a plurality of fasteners. The cup includes a recess forming an interior surface, and a plurality of seats extending from the interior surface. The crossbar includes a central portion and a plurality of elongated members extending therefrom. Each of the members includes a head that engages a corresponding one of the seats of the cup and is secured to the seat by one of the fasteners. The central portion of the crossbar may include a central aperture that receives one of the fasteners for an additional attachment point to the cup. The crossbar is adapted to receive tie down hooks, connectors, and the like. When the crossbar requires repair or replacement, it may be removed from the cup by unfastening the fasteners without the need to remove the cup from the structure.
Abstract:
Apparatus suited for removing carbon dioxide from gases are disclosed. The apparatus may employ bodies having a photocatalytic film. Associated methods and compositions are also disclosed.