Abstract:
Subsea heating assembly, comprising a component interface cable (9) in association with a subsea component (7′) to be heated. The component interface cable receives power from an electric power source. The power source comprises an induction coupler (100) with core rings which surround an alternating current carrying source cable (5), and a winding cable (107) wound around the core ring The winding cable connects to the component interface cable. The induction coupler comprises an upper section (100a) with first core parts (101a) and a lower section (100b) with second core parts (101b). The winding cable is arranged in the upper section. The first core parts are aligned with second core parts when the upper section is landed on the lower section. The upper section is removable from the lower section.
Abstract:
A power cable (C1), or power umbilical, comprising a number of electric high power cables (10) for transfer of large amounts of electric power/energy; filler material (2, 3, 4, 5, 6) in the form of stiff elongate plastic elements; the number of electric high power cables (10) and stiff elongate plastic elements (2, 3, 4, 5, 6) being gathered in a twisted bundle by means of a laying operation; a protective sheath (1) that encompasses the electric cables and the filler material; and at least one longitudinally extending channel (6) is provided for forced flow transportation of a cooling agent through said power cable/umbilical in order to cool down the electric high power cables (10) and their insulation material from a critical temperature value of about 90° C.
Abstract:
A subsea direct electrical heating assembly adapted to heat a hydrocarbon conducting steel pipeline (1) arranged subsea. The assembly comprises a direct electrical heating cable (3) extending along and being connected to the steel pipeline (1) and a power transmission cable (7) receiving electric power from a power supply (5) which is arranged onshore or at surface offshore, and which feeds the direct electrical heating cable (3). The subsea direct electrical heating assembly comprises a power conditioning arrangement (100) arranged at a subsea location, in a position between the power transmission cable (7) and the direct electrical heating cable (3). The power transmission cable (7) extends from the offshore or onshore power supply (5) and down to the power conditioning arrangement (100).
Abstract:
A subsea direct electrical heating assembly adapted to heat a hydrocarbon conducting steel pipeline (1) arranged subsea. The assembly comprises a direct electrical heating cable (3) extending along and being connected to the steel pipeline (1) and a power transmission cable (7) receiving electric power from a power supply (5) which is arranged onshore or at surface offshore, and which feeds the direct electrical heating cable (3). The subsea direct electrical heating assembly comprises a power conditioning arrangement (100) arranged at a subsea location, in a position between the power transmission cable (7) and the direct electrical heating cable (3). The power transmission cable (7) extends from the offshore or onshore power supply (5) and down to the power conditioning arrangement (100).
Abstract:
Subsea heating assembly, comprising a component interface cable (9) in association with a subsea component (7′) to be heated. The component interface cable receives power from an electric power source. The power source comprises an induction coupler (100) with core rings which surround an alternating current carrying source cable (5), and a winding cable (107) wound around the core ring The winding cable connects to the component interface cable. The induction coupler comprises an upper section (100a) with first core parts (101a) and a lower section (100b) with second core parts (101b). The winding cable is arranged in the upper section. The first core parts are aligned with second core parts when the upper section is landed on the lower section. The upper section is removable from the lower section.
Abstract:
A power cable (C1), or power umbilical, comprising a number of electric high power cables (10) for transfer of large amounts of electric power/energy; filler material (2, 3, 4, 5, 6) in the form of stiff elongate plastic elements; the number of electric high power cables (10) and stiff elongate plastic elements (2, 3, 4, 5, 6) being gathered in a twisted bundle by means of a laying operation; a protective sheath (1) that encompasses the electric cables and the filler material; and at least one longitudinally extending channel (6) is provided for forced flow transportation of a cooling agent through said power cable/umbilical in order to cool down the electric high power cables (10) and their insulation material from a critical temperature value of about 90° C.