-
公开(公告)号:US11875221B2
公开(公告)日:2024-01-16
申请号:US17468476
申请日:2021-09-07
Applicant: Adobe Inc.
Inventor: Wei-An Lin , Baldo Faieta , Cameron Smith , Elya Shechtman , Jingwan Lu , Jun-Yan Zhu , Niloy Mitra , Ratheesh Kalarot , Richard Zhang , Shabnam Ghadar , Zhixin Shu
IPC: G06N3/08 , G06F3/04845 , G06F3/04847 , G06T11/60 , G06T3/40 , G06N20/20 , G06T5/00 , G06T5/20 , G06T3/00 , G06T11/00 , G06F18/40 , G06F18/211 , G06F18/214 , G06F18/21 , G06N3/045
CPC classification number: G06N3/08 , G06F3/04845 , G06F3/04847 , G06F18/211 , G06F18/214 , G06F18/2163 , G06F18/40 , G06N3/045 , G06N20/20 , G06T3/0006 , G06T3/0093 , G06T3/40 , G06T3/4038 , G06T3/4046 , G06T5/005 , G06T5/20 , G06T11/001 , G06T11/60 , G06T2207/10024 , G06T2207/20081 , G06T2207/20084 , G06T2207/20221 , G06T2210/22
Abstract: Systems and methods generate a filtering function for editing an image with reduced attribute correlation. An image editing system groups training data into bins according to a distribution of a target attribute. For each bin, the system samples a subset of the training data based on a pre-determined target distribution of a set of additional attributes in the training data. The system identifies a direction in the sampled training data corresponding to the distribution of the target attribute to generate a filtering vector for modifying the target attribute in an input image, obtains a latent space representation of an input image, applies the filtering vector to the latent space representation of the input image to generate a filtered latent space representation of the input image, and provides the filtered latent space representation as input to a neural network to generate an output image with a modification to the target attribute.
-
公开(公告)号:US20220391611A1
公开(公告)日:2022-12-08
申请号:US17341778
申请日:2021-06-08
Applicant: ADOBE INC.
Inventor: RATHEESH KALAROT , Siavash Khodadadeh , Baldo Faieta , Shabnam Ghadar , Saeid Motiian , Wei-An Lin , Zhe Lin
Abstract: Systems and methods for image processing are described. One or more embodiments of the present disclosure identify a latent vector representing an image of a face, identify a target attribute vector representing a target attribute for the image, generate a modified latent vector using a mapping network that converts the latent vector and the target attribute vector into a hidden representation having fewer dimensions than the latent vector, wherein the modified latent vector is generated based on the hidden representation, and generate a modified image based on the modified latent vector, wherein the modified image represents the face with the target attribute.
-
公开(公告)号:US11983628B2
公开(公告)日:2024-05-14
申请号:US17468487
申请日:2021-09-07
Applicant: Adobe Inc.
Inventor: Wei-An Lin , Baldo Faieta , Cameron Smith , Elya Shechtman , Jingwan Lu , Jun-Yan Zhu , Niloy Mitra , Ratheesh Kalarot , Richard Zhang , Shabnam Ghadar , Zhixin Shu
IPC: G06N3/08 , G06F3/04845 , G06F3/04847 , G06F18/21 , G06F18/211 , G06F18/214 , G06F18/40 , G06N3/045 , G06N20/20 , G06T3/02 , G06T3/18 , G06T3/40 , G06T3/4038 , G06T3/4046 , G06T5/20 , G06T5/77 , G06T11/00 , G06T11/60
CPC classification number: G06N3/08 , G06F3/04845 , G06F3/04847 , G06F18/211 , G06F18/214 , G06F18/2163 , G06F18/40 , G06N3/045 , G06N20/20 , G06T3/02 , G06T3/18 , G06T3/40 , G06T3/4038 , G06T3/4046 , G06T5/20 , G06T5/77 , G06T11/001 , G06T11/60 , G06T2207/10024 , G06T2207/20081 , G06T2207/20084 , G06T2207/20221 , G06T2210/22
Abstract: Systems and methods dynamically adjust an available range for editing an attribute in an image. An image editing system computes a metric for an attribute in an input image as a function of a latent space representation of the input image and a filtering vector for editing the input image. The image editing system compares the metric to a threshold. If the metric exceeds the threshold, then the image editing system selects a first range for editing the attribute in the input image. If the metric does not exceed the threshold, a second range is selected. The image editing system causes display of a user interface for editing the input image comprising an interface element for editing the attribute within the selected range.
-
公开(公告)号:US20220270310A1
公开(公告)日:2022-08-25
申请号:US17182492
申请日:2021-02-23
Applicant: Adobe Inc.
Inventor: Akhilesh Kumar , Baldo Faieta , Piotr Walczyszyn , Ratheesh Kalarot , Archie Bagnall , Shabnam Ghadar , Wei-An Lin , Cameron Smith , Christian Cantrell , Patrick Hebron , Wilson Chan , Jingwan Lu , Holger Winnemoeller , Sven Olsen
Abstract: The present disclosure describes systems, methods, and non-transitory computer readable media for detecting user interactions to edit a digital image from a client device and modify the digital image for the client device by using a web-based intermediary that modifies a latent vector of the digital image and an image modification neural network to generate a modified digital image from the modified latent vector. In response to user interaction to modify a digital image, for instance, the disclosed systems modify a latent vector extracted from the digital image to reflect the requested modification. The disclosed systems further use a latent vector stream renderer (as an intermediary device) to generate an image delta that indicates a difference between the digital image and the modified digital image. The disclosed systems then provide the image delta as part of a digital stream to a client device to quickly render the modified digital image.
-
5.
公开(公告)号:US12254597B2
公开(公告)日:2025-03-18
申请号:US17709221
申请日:2022-03-30
Applicant: Adobe Inc.
Inventor: Cameron Smith , Wei-An Lin , Timothy M. Converse , Shabnam Ghadar , Ratheesh Kalarot , John Nack , Jingwan Lu , Hui Qu , Elya Shechtman , Baldo Faieta
Abstract: An item recommendation system receives a set of recommendable items and a request to select, from the set of recommendable items, a contrast group. The item recommendation system selects a contrast group from the set of recommendable items by applying a image modification model to the set of recommendable items. The image modification model includes an item selection model configured to determine an unbiased conversion rate for each item of the set of recommendable items and select a recommended item from the set of recommendable items having a greatest unbiased conversion rate. The image modification model includes a contrast group selection model configured to select, for the recommended item, a contrast group comprising the recommended item and one or more contrast items. The item recommendation system transmits the contrast group responsive to the request.
-
公开(公告)号:US11880766B2
公开(公告)日:2024-01-23
申请号:US17384357
申请日:2021-07-23
Applicant: Adobe Inc.
Inventor: Cameron Smith , Ratheesh Kalarot , Wei-An Lin , Richard Zhang , Niloy Mitra , Elya Shechtman , Shabnam Ghadar , Zhixin Shu , Yannick Hold-Geoffrey , Nathan Carr , Jingwan Lu , Oliver Wang , Jun-Yan Zhu
IPC: G06N3/08 , G06F3/04845 , G06F3/04847 , G06T11/60 , G06T3/40 , G06N20/20 , G06T5/00 , G06T5/20 , G06T3/00 , G06T11/00 , G06F18/40 , G06F18/211 , G06F18/214 , G06F18/21 , G06N3/045
CPC classification number: G06N3/08 , G06F3/04845 , G06F3/04847 , G06F18/211 , G06F18/214 , G06F18/2163 , G06F18/40 , G06N3/045 , G06N20/20 , G06T3/0006 , G06T3/0093 , G06T3/40 , G06T3/4038 , G06T3/4046 , G06T5/005 , G06T5/20 , G06T11/001 , G06T11/60 , G06T2207/10024 , G06T2207/20081 , G06T2207/20084 , G06T2207/20221 , G06T2210/22
Abstract: An improved system architecture uses a pipeline including a Generative Adversarial Network (GAN) including a generator neural network and a discriminator neural network to generate an image. An input image in a first domain and information about a target domain are obtained. The domains correspond to image styles. An initial latent space representation of the input image is produced by encoding the input image. An initial output image is generated by processing the initial latent space representation with the generator neural network. Using the discriminator neural network, a score is computed indicating whether the initial output image is in the target domain. A loss is computed based on the computed score. The loss is minimized to compute an updated latent space representation. The updated latent space representation is processed with the generator neural network to generate an output image in the target domain.
-
7.
公开(公告)号:US20230316475A1
公开(公告)日:2023-10-05
申请号:US17709221
申请日:2022-03-30
Applicant: Adobe Inc.
Inventor: Cameron Smith , Wei-An Lin , Timothy M. Converse , Shabnam Ghadar , Ratheesh Kalarot , John Nack , Jingwan Lu , Hui Qu , Elya Shechtman , Baldo Faieta
CPC classification number: G06T5/50 , G06N3/0454 , G06T2207/20221 , G06T2207/20084 , G06T2207/20081
Abstract: An item recommendation system receives a set of recommendable items and a request to select, from the set of recommendable items, a contrast group. The item recommendation system selects a contrast group from the set of recommendable items by applying a image modification model to the set of recommendable items. The image modification model includes an item selection model configured to determine an unbiased conversion rate for each item of the set of recommendable items and select a recommended item from the set of recommendable items having a greatest unbiased conversion rate. The image modification model includes a contrast group selection model configured to select, for the recommended item, a contrast group comprising the recommended item and one or more contrast items. The item recommendation system transmits the contrast group responsive to the request.
-
公开(公告)号:US11727614B2
公开(公告)日:2023-08-15
申请号:US17182492
申请日:2021-02-23
Applicant: Adobe Inc.
Inventor: Akhilesh Kumar , Baldo Faieta , Piotr Walczyszyn , Ratheesh Kalarot , Archie Bagnall , Shabnam Ghadar , Wei-An Lin , Cameron Smith , Christian Cantrell , Patrick Hebron , Wilson Chan , Jingwan Lu , Holger Winnemoeller , Sven Olsen
CPC classification number: G06T11/60 , G06N3/04 , G06T11/203
Abstract: The present disclosure describes systems, methods, and non-transitory computer readable media for detecting user interactions to edit a digital image from a client device and modify the digital image for the client device by using a web-based intermediary that modifies a latent vector of the digital image and an image modification neural network to generate a modified digital image from the modified latent vector. In response to user interaction to modify a digital image, for instance, the disclosed systems modify a latent vector extracted from the digital image to reflect the requested modification. The disclosed systems further use a latent vector stream renderer (as an intermediary device) to generate an image delta that indicates a difference between the digital image and the modified digital image. The disclosed systems then provide the image delta as part of a digital stream to a client device to quickly render the modified digital image.
-
公开(公告)号:US20220122232A1
公开(公告)日:2022-04-21
申请号:US17468476
申请日:2021-09-07
Applicant: Adobe Inc.
Inventor: Wei-An Lin , Baldo Faieta , Cameron Smith , Elya Shechtman , Jingwan Lu , Jun-Yan Zhu , Niloy Mitra , Ratheesh Kalarot , Richard Zhang , Shabnam Ghadar , Zhixin Shu
Abstract: Systems and methods generate a filtering function for editing an image with reduced attribute correlation. An image editing system groups training data into bins according to a distribution of a target attribute. For each bin, the system samples a subset of the training data based on a pre-determined target distribution of a set of additional attributes in the training data. The system identifies a direction in the sampled training data corresponding to the distribution of the target attribute to generate a filtering vector for modifying the target attribute in an input image, obtains a latent space representation of an input image, applies the filtering vector to the latent space representation of the input image to generate a filtered latent space representation of the input image, and provides the filtered latent space representation as input to a neural network to generate an output image with a modification to the target attribute.
-
公开(公告)号:US20240412429A1
公开(公告)日:2024-12-12
申请号:US18332163
申请日:2023-06-09
Applicant: ADOBE INC.
Inventor: Wei-An Lin , Hui Qu , Siavash Khodadadeh , Kevin Duarte , Surabhi Sinha , Ratheesh Kalarot , Shabnam Ghadar
Abstract: Systems and methods for editing multiple attributes of an image are described. Embodiments are configured to receive input comprising an image of a face and a target value of an attribute of the face to be modified; encode the image using an encoder of an image generation neural network to obtain an image embedding; and generate a modified image of the face having the target value of the attribute based on the image embedding using a decoder of the image generation neural network. The image generation neural network is trained using a plurality of training images generated by a separate training image generation neural network, and the plurality of training images include a first synthetic image having a first value of the attribute and a second synthetic image depicting a same face as the first synthetic image with a second value of the attribute.
-
-
-
-
-
-
-
-
-