Customer journey management using machine learning

    公开(公告)号:US12205127B2

    公开(公告)日:2025-01-21

    申请号:US17232591

    申请日:2021-04-16

    Applicant: ADOBE INC.

    Abstract: Interactions between a user and an e-commerce platform are automatically guided to increase the chances of a conversion. Previous sequences of interactions (e.g., conversion journeys and non-conversion journeys) with the e-commerce platform are collected, an artificial neural network (ANN) learns how to estimate a safety value a current user state by learning from previous user interactions (e.g., conversion and non-conversion journeys), a software agent of the e-commerce platform applies a current user state of the user to the ANN to determine a current safety value, and the software agent provides content to the user based on the current safety value and the current user state.

    Providing insights and suggestions for journeys

    公开(公告)号:US11861636B2

    公开(公告)日:2024-01-02

    申请号:US16910357

    申请日:2020-06-24

    Applicant: ADOBE INC.

    CPC classification number: G06Q30/0205 G06N20/00 G06Q10/0633 G06Q30/0201

    Abstract: Methods and systems are provided for generating and providing insights associated with a journey. In embodiments described herein, journey data associated with a journey is obtained. A journey can include journey paths indicating workflows through which audience members can traverse. The journey data can include audience member attributes (e.g., demographics) and labels indicating journey paths traversed by audience members. A set of audience segments are determined that describe a set of audience members traversing a particular journey path. The set of audience segments can be determined using the journey data to train a segmentation model and, thereafter, analyzing the segmentation model to identify patterns that indicate audience segments associated with the particular journey path. An indication of the set of audience segments that describe the set of audience members traversing the particular journey path can be provided for display.

    CUSTOMER JOURNEY MANAGEMENT USING MACHINE LEARNING

    公开(公告)号:US20220335508A1

    公开(公告)日:2022-10-20

    申请号:US17232591

    申请日:2021-04-16

    Applicant: ADOBE INC.

    Abstract: Interactions between a user and an e-commerce platform are automatically guided to increase the chances of a conversion. Previous sequences of interactions (e.g., conversion journeys and non-conversion journeys) with the e-commerce platform are collected, an artificial neural network (ANN) learns how to estimate a safety value a current user state by learning from previous user interactions (e.g., conversion and non-conversion journeys), a software agent of the e-commerce platform applies a current user state of the user to the ANN to determine a current safety value, and the software agent provides content to the user based on the current safety value and the current user state.

    TRAJECTORY-BASED EXPLAINABILITY FRAMEWORK FOR REINFORCEMENT LEARNING MODELS

    公开(公告)号:US20240403651A1

    公开(公告)日:2024-12-05

    申请号:US18328174

    申请日:2023-06-02

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media that provide a trajectory-based explainability framework for reinforcement learning models. For example, the disclosed systems generate trajectory clusters from trajectories utilized to train a reinforcement learning agent. In some embodiments, the disclosed system generates a complementary target data set by removing a target trajectory cluster from the trajectory clusters. In some cases, the disclosed system trains a test reinforcement learning agent utilizing the complementary target data set and generates a cluster attribution by comparing the result of the test reinforcement learning agent with the result of the reinforcement learning agent.

Patent Agency Ranking