-
1.
公开(公告)号:US11551239B2
公开(公告)日:2023-01-10
申请号:US16162023
申请日:2018-10-16
Applicant: Adobe Inc.
Inventor: Deepali Jain , Atanu R. Sinha , Deepali Gupta , Nikhil Sheoran , Sopan Khosla , Reshmi Naduparambil Sasidharan
IPC: G06Q30/02 , G06Q30/00 , G06F17/18 , G06F3/0484
Abstract: There is described a method and system in an interactive computing environment modified with user experience values based on behavior logs. An experience valuation system determines an experience value and an estimated experience value. The experience value is based on a current state of interaction data from a user session, based on a history of past events, and an estimation function defined by parameters to model the user experience values. The estimated experience value is determined based on, in addition to the current state and the estimation function, next states associated with the current state, and a reward function. The parameters of the estimation function are updated based on a comparison of the expected experience value and the estimated experience value. For another aspect, the method and system may further include a state prediction system to determine probabilities of transitioning that may be applied to determine the estimated experience value.
-
公开(公告)号:US20190311279A1
公开(公告)日:2019-10-10
申请号:US15946884
申请日:2018-04-06
Applicant: Adobe Inc.
Inventor: Atanu R. Sinha , Deepali Jain , Nikhil Sheoran , Deepali Gupta , Sopan Khosla
Abstract: In some embodiments, a computing system computes, with a state prediction model, probabilities of transitioning from a click state represented by interaction data to various predicted next states. The computing system computes an interface experience metric for the click with an experience valuation model. To do so, the computing system identifies base values for the click state and the predicted next states. The computing system computes value differentials for between the click state's base value and each predicted next state's base value. Value differentials indicate qualities of interface experience. The computing system determines the interface experience metric from a summation that includes the current click state's base value and the value differentials weighted with the predicted next states' probabilities. The computing system transmits the interface experience metric to an online platform, which can cause interface elements of the online platform to be modified based on the interface experience metric.
-
公开(公告)号:US20210241158A1
公开(公告)日:2021-08-05
申请号:US17236506
申请日:2021-04-21
Applicant: Adobe Inc.
Inventor: Atanu R. Sinha , Deepali Jain , Nikhil Sheoran , Deepali Gupta , Sopan Khosla
Abstract: In some embodiments, a computing system computes, with a state prediction model, probabilities of transitioning from a click state represented by interaction data to various predicted next states. The computing system computes an interface experience metric for the click with an experience valuation model. To do so, the computing system identifies base values for the click state and the predicted next states. The computing system computes value differentials for between the click state's base value and each predicted next state's base value. Value differentials indicate qualities of interface experience. The computing system determines the interface experience metric from a summation that includes the current click state's base value and the value differentials weighted with the predicted next states' probabilities. The computing system transmits the interface experience metric to an online platform, which can cause interface elements of the online platform to be modified based on the interface experience metric.
-
公开(公告)号:US11068285B2
公开(公告)日:2021-07-20
申请号:US16576310
申请日:2019-09-19
Applicant: Adobe Inc.
Inventor: Nikhil Sheoran , Nayan Raju Vysyaraju , Varun Srivastava , Nisheeth Golakiya , Dhruv Singal , Deepali Jain , Atanu Sinha
Abstract: In some embodiments, interaction data associated with user interactions with a user interface of an interactive computing environment is identified, and goal clusters of the interaction data are computed based on sequences of the user interactions and performing inverse reinforcement learning on the goal clusters to return rewards and policies. Further, likelihood values of additional sequences of user interactions falling within the goal clusters are computed based on the policies corresponding to each of the goal clusters and assigning the additional sequences to the goal clusters with greatest likelihood values. Computing interface experience metrics of the additional sequences are computed using the rewards and the policies corresponding to the goal clusters of the additional sequences and transmitting the interface experience metrics to the online platform. The interface experience metrics are usable for changing arrangements of interface elements to improve the interface experience metrics.
-
公开(公告)号:US20210311751A1
公开(公告)日:2021-10-07
申请号:US17350889
申请日:2021-06-17
Applicant: Adobe Inc.
Inventor: Nikhil Sheoran , Nayan Raju Vysyaraju , Varun Srivastava , Nisheeth Golakiya , Dhruv Singal , Deepali Jain , Atanu Sinha
Abstract: A method includes identifying interaction data associated with user interactions with a user interface of an interactive computing environment. The method also includes computing goal clusters of the interaction data based on sequences of the user interactions and performing inverse reinforcement learning on the goal clusters to return rewards and policies. Further, the method includes computing likelihood values of additional sequences of user interactions falling within the goal clusters based on the policies corresponding to each of the goal clusters and assigning the additional sequences to the goal clusters with greatest likelihood values. Furthermore, the method includes computing interface experience metrics of the additional sequences using the rewards and the policies corresponding to the goal clusters of the additional sequences and transmitting the interface experience metrics to the online platform. The interface experience metrics are usable for changing arrangements of interface elements to improve the interface experience metrics.
-
公开(公告)号:US11687352B2
公开(公告)日:2023-06-27
申请号:US17350889
申请日:2021-06-17
Applicant: Adobe Inc.
Inventor: Nikhil Sheoran , Nayan Raju Vysyaraju , Varun Srivastava , Nisheeth Golakiya , Dhruv Singal , Deepali Jain , Atanu Sinha
CPC classification number: G06F9/451 , G06F3/048 , G06F11/3438 , G06F18/23 , G06N20/00
Abstract: A method includes identifying interaction data associated with user interactions with a user interface of an interactive computing environment. The method also includes computing goal clusters of the interaction data based on sequences of the user interactions and performing inverse reinforcement learning on the goal clusters to return rewards and policies. Further, the method includes computing likelihood values of additional sequences of user interactions falling within the goal clusters based on the policies corresponding to each of the goal clusters and assigning the additional sequences to the goal clusters with greatest likelihood values. Furthermore, the method includes computing interface experience metrics of the additional sequences using the rewards and the policies corresponding to the goal clusters of the additional sequences and transmitting the interface experience metrics to the online platform. The interface experience metrics are usable for changing arrangements of interface elements to improve the interface experience metrics.
-
公开(公告)号:US11023819B2
公开(公告)日:2021-06-01
申请号:US15946884
申请日:2018-04-06
Applicant: Adobe Inc.
Inventor: Atanu R. Sinha , Deepali Jain , Nikhil Sheoran , Deepali Gupta , Sopan Khosla
Abstract: In some embodiments, a computing system computes, with a state prediction model, probabilities of transitioning from a click state represented by interaction data to various predicted next states. The computing system computes an interface experience metric for the click with an experience valuation model. To do so, the computing system identifies base values for the click state and the predicted next states. The computing system computes value differentials for between the click state's base value and each predicted next state's base value. Value differentials indicate qualities of interface experience. The computing system determines the interface experience metric from a summation that includes the current click state's base value and the value differentials weighted with the predicted next states' probabilities. The computing system transmits the interface experience metric to an online platform, which can cause interface elements of the online platform to be modified based on the interface experience metric.
-
8.
公开(公告)号:US20200334545A1
公开(公告)日:2020-10-22
申请号:US16389628
申请日:2019-04-19
Applicant: Adobe Inc.
Inventor: Atanu Sinha , Prakhar Gupta , Manoj Kilaru , Madhav Goel , Deepanshu Bansal , Deepali Jain , Aniket Raj
IPC: G06N5/02 , G06F16/2457 , G06N5/04 , G06Q30/02 , G06F16/901 , G06N3/04
Abstract: A method includes accessing a subject entity and a subject relation of a focal platform and accessing a knowledge graph representative of control performance data. Further, the method includes computing a set of ranked target entities that cause the subject entity based on the subject relation or are an effect of the subject entity based on the subject relation. Computing the set of ranked target entities is performed using relational hops from the subject entity within the knowledge graph performed using the subject relation and reward functions. The method also includes transmitting the set of ranked target entities to the focal platform. The set of ranked target entities is usable for modifying a user interface of an interactive computing environment provided by the focal platform.
-
公开(公告)号:US10783361B2
公开(公告)日:2020-09-22
申请号:US16723619
申请日:2019-12-20
Applicant: ADOBE INC.
Inventor: Sungchul Kim , Deepali Jain , Deepali Gupta , Eunyee Koh , Branislav Kveton , Nikhil Sheoran , Atanu Sinha , Hung Hai Bui , Charles Li Chen
IPC: G06K9/00 , G06N3/04 , G06N3/08 , G06F16/954 , G06K9/62
Abstract: Systems and methods provide for generating predictive models that are useful in predicting next-user-actions. User-specific navigation sequences are obtained, the navigation sequences representing temporally-related series of actions performed by users during navigation sessions. To each navigation sequence, a Recurrent Neural Network (RNN) is applied to encode the navigation sequences into user embeddings that reflect time-based, sequential navigation patterns for the user. Once a set of navigation sequences is encoded to a set of user embeddings, a variety of classifiers (prediction models) may be applied to the user embeddings to predict what a probable next-user-action may be and/or the likelihood that the next-user-action will be a desired target action.
-
公开(公告)号:US12124948B2
公开(公告)日:2024-10-22
申请号:US17236506
申请日:2021-04-21
Applicant: Adobe Inc.
Inventor: Atanu R. Sinha , Deepali Jain , Nikhil Sheoran , Deepali Gupta , Sopan Khosla
Abstract: In some embodiments, a computing system computes, with a state prediction model, probabilities of transitioning from a click state represented by interaction data to various predicted next states. The computing system computes an interface experience metric for the click with an experience valuation model. To do so, the computing system identifies base values for the click state and the predicted next states. The computing system computes value differentials for between the click state's base value and each predicted next state's base value. Value differentials indicate qualities of interface experience. The computing system determines the interface experience metric from a summation that includes the current click state's base value and the value differentials weighted with the predicted next states' probabilities. The computing system transmits the interface experience metric to an online platform, which can cause interface elements of the online platform to be modified based on the interface experience metric.
-
-
-
-
-
-
-
-
-