Abstract:
A system method and computer program product for creating a composited video frame sequence for an application. A current scene state for the application is compared to a previous scene state wherein each scene state includes a plurality of objects. A video construction engine determines if properties of one or more objects have changed based upon a comparison of the scene states. If properties of one or more objects have changed based upon the comparison, the delta between the object's states is determined and this information is used by a fragment encoding module if the fragment has not been encoded before. The information is used to define, for example, the motion vectors for use by the fragment encoding module in construction of the fragments to be used by the stitching module to build the composited video frame sequence.
Abstract:
The method of providing audiovisual content to a client device configured to be coupled to a display. The method detects a selection of a graphical element corresponding to a video content item. In response to detecting the selection of the graphical element, a transmission mode is determined. The transmission mode is a function of: (i) one or more decoding capabilities of the client device; (ii) a video encoding format of the video content item; (ii) whether the video content item should be displayed in a full screen or a partial screen format; and (iv) whether the client device is capable of overlaying image data into a video stream. Next, audiovisual data that includes the video content item is prepared for transmission according to the determined transmission mode. Finally, the prepared audiovisual data is transmitted from the server toward the client device, according to the determined transmission mode, for display on the display.
Abstract:
The method of providing audiovisual content to a client device configured to be coupled to a display. The method detects a selection of a graphical element corresponding to a video content item. In response to detecting the selection of the graphical element, a transmission mode is determined. The transmission mode is a function of: (i) one or more decoding capabilities of the client device; (ii) a video encoding format of the video content item; (ii) whether the video content item should be displayed in a full screen or a partial screen format; and (iv) whether the client device is capable of overlaying image data into a video stream. Next, audiovisual data that includes the video content item is prepared for transmission according to the determined transmission mode. Finally, the prepared audiovisual data is transmitted from the server toward the client device, according to the determined transmission mode, for display on the display.
Abstract:
A method of generating a blended output including an interactive user interface and one or more supplemental images. At a client device, a video stream containing an interactive user interface is received from a server using a first data communications channel configured to communicate video content and a command is transmitted to the server that relates to a user input received through the interactive user interface. In response to the transmitting, an updated user interface is received using the first data communications channel, and one or more supplemental images are received using a second data communications channel. Each supplemental image is associated with a corresponding transparency coefficient. The updated user interface and the one or more supplemental images are blended according to the transparency coefficient for each supplemental image to generate a blended output and the blended output is transmitted toward the display device for display thereon.
Abstract:
The method of providing audiovisual content to a client device configured to be coupled to a display. The method detects a selection of a graphical element corresponding to a video content item. In response to detecting the selection of the graphical element, a transmission mode is determined. The transmission mode is a function of: (i) one or more decoding capabilities of the client device; (ii) a video encoding format of the video content item; (ii) whether the video content item should be displayed in a full screen or a partial screen format; and (iv) whether the client device is capable of overlaying image data into a video stream. Next, audiovisual data that includes the video content item is prepared for transmission according to the determined transmission mode. Finally, the prepared audiovisual data is transmitted from the server toward the client device, according to the determined transmission mode, for display on the display.
Abstract:
A system method and computer program product for creating a composited video frame sequence for an application. A current scene graph state for the application is compared to a previous scene graph state wherein each scene graph state includes a plurality of hierarchical nodes that represent one or more objects at each node. A video construction engine determines if one or more objects have moved based upon a comparison of the scene graph states. If one or more objects have moved based upon the scene graph comparison, motion information about the objects is determined and the motion information is forwarded to a stitcher module. The motion information is used to define motion vectors for use by the stitcher module in construction of the composited video frame sequence.
Abstract:
A system method and computer program product for creating a composited video frame sequence for an application. A current scene graph state for the application is compared to a previous scene graph state wherein each scene graph state includes a plurality of hierarchical nodes that represent one or more objects at each node. A video construction engine determines if one or more objects have moved based upon a comparison of the scene graph states. If one or more objects have moved based upon the scene graph comparison, motion information about the objects is determined and the motion information is forwarded to a stitcher module. The motion information is used to define motion vectors for use by the stitcher module in construction of the composited video frame sequence.
Abstract:
The method of providing audiovisual content to a client device configured to be coupled to a display. The method detects a selection of a graphical element corresponding to a video content item. In response to detecting the selection of the graphical element, a transmission mode is determined. The transmission mode is a function of: (i) one or more decoding capabilities of the client device; (ii) a video encoding format of the video content item; (ii) whether the video content item should be displayed in a full screen or a partial screen format; and (iv) whether the client device is capable of overlaying image data into a video stream. Next, audiovisual data that includes the video content item is prepared for transmission according to the determined transmission mode. Finally, the prepared audiovisual data is transmitted from the server toward the client device, according to the determined transmission mode, for display on the display.
Abstract:
A method of generating a blended output including an interactive user interface and one or more supplemental images. At a client device, a video stream containing an interactive user interface is received from a server using a first data communications channel configured to communicate video content and a command is transmitted to the server that relates to a user input received through the interactive user interface. In response to the transmitting, an updated user interface is received using the first data communications channel, and one or more supplemental images are received using a second data communications channel. Each supplemental image is associated with a corresponding transparency coefficient. The updated user interface and the one or more supplemental images are blended according to the transparency coefficient for each supplemental image to generate a blended output and the blended output is transmitted toward the display device for display thereon.
Abstract:
A method of combining an interactive user interface for generating a blended output that includes the interactive user interface and one or more supplemental images. At a client device remote from a server, a video stream that contains an interactive user interface is received from the server using a first data communications channel configured to communicate video content, and a command that relates to an interactive user interface is transmitted to the server. In response to the transmitting, an updated user interface is received from the server using the first data communications channel, and one or more supplemental images for supplementing the interactive user interface are received using a second data communications channel different from the first data communications channel. The updated user interface and the one or more supplemental images are blended to generate a blended output, which is transmitted toward the display device for display thereon.